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domain, independentfrom space[i.e., anti-Euclidean—bmd],

Pedagogy inwhich abstra(_:t ggneral concepts of magnitudes, are invgsti—
gated as combinations of magnitudes connected by continu-
ity: a domain, which, at present, is poorly developed, and in
which one cannot move without the use of language borrowed
from spatial images.”

Fundamel’ltal TheOI'ﬁInZ It is my intention to provide a summary sketch of the

history of this idea, and Gauss’ development of it. It can not

2 .
Gauss S DCCla_r atl()n be exhaustive. Rather it seeks to outline the steps which
should form the basis for oral pedagogical dialogues, already
Of Independence under way in various locations.

Multiply-Extended M agnitude
A physical concept of magnitude was already fully devel-
oped by circles associated with Plato, and expressed most
In September 1798, after three years of self-directed study, explicitly iMéingo, Theatetusand Timaeusdialogues.
the great mathematician Carl Friedrich Gauss, then 21 yeaRlato and his circle demonstrated this concept, pedagogically,
old, left Gitingen University without a diploma. He returned through the paradoxes that arise when considering the unique
to his native city of Brunswick to begin the composition of ness of the five regular solids, and the related problems of
his Disquisitiones Arithmetica@nd, lacking any prospectof ~ doubling a line, square, and cube. As Plato emphasized, each
employment, hoped to continue receiving his student stipendpecies of action generated a different species of magnitude.
After several months of living on credit, word came from He denoted such magnitudes by the Gredknamaisa
the Duke that the stipend would continue, provided Gausserm akin to Leibniz’ use of the worHraft, translated into
obtained his doctor of philosophy degree—a task Gauss English as “power.”
thought a distraction, and wished to postpone. That is, a linear magnitude has the “power” to double a
Nevertheless, he took the opportunity to produce avirtual  line, while only a magnitude of a different species has the
declaration of independence from the stifling world of deduc-‘power” to double the square, and a still different species has
tive mathematics, in the form of a written thesis submittedto  the “power”to double a culbégaees1a-1c). In Bernhard
the faculty of the University of Helmstedt, on a new proof of Riemann’s language, these magnitudes are called, respec-
the fundamental theorem of algebra. Within months, he was  tively: simply extended, doubly extended, and triply ex-
granted his doctorate without even having to appear for oralended. Plato’s circle emphasized that magnitudes of lesser

by Bruce Director

examination. extension lacked the capacity to generate magnitudes of
Describing his intention to his former classmate, higher extension, creating, conceptually, a succession of
Wolfgang Bolyai, Gauss wrote, “The title [fundamental theo-  “higher powers.”

rem] indicates quite definitely the purpose of the essay; only Do notthink here of the deductive use of the term “dimen-
about a third of the whole, nevertheless, is used for this pur-  sion.” While a perfectly good word, “dimension” in modern
pose; the remainder contains chiefly the history and a critiquesage too often is associated with the Kantian idea of formal
of works on the same subject by other mathematicians (viz. Euclidean space, in which space is considered as a combir
d’Alembert, Bougainville, Euler, de Foncenex, Lagrange,tion of three, independent, simply extended dimensions.
and the encyclopedists . . . which latter, however, will proba- Think, instead, of “physical extension.” A line is pro-
bly not be much pleased), besides many and varied commendisiced by a physical action of simple extension. A surface
on the shallowness which is so dominant in our present-day =~ may be bounded by lines, butitis not made from lines; rathe
mathematics.”
In essence, Gauss was defending, and extending, a princi-
ple that goes back to Plato, in which only physical action, not
arbitrary assumptions, defines our notion of magnitude. Lik&gure 1a
Plato, Gauss recognized it were insufficient to simply stateDoubling the Line
hisdiscovery, unlessitwere combined with a polemical attack
on the Aristotelean falsehoods that had become so popular
among his contemporaries. |
Looking back on his dissertation 50 years later, Gauss
said, “The demonstration is presented using expressions bor- I
rowed from the geometry of position; for in this way, the

greatest acuity and simplicity is obtained. Fundamentally, therhe magnitude which has tpewerto double the length of a line
essential content of the entire argument belongs to a highes produced by a simple extension of a line.
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FIGURE 1b
Doubling the Square

The magnitude which has tipewer to produce a square of double

area, is the diagonal of the smaller square, and is called “the

geometric mean,” between the two squares. The magnitude of the
length of the diagonal is incommensurable with, and cannot be
produced by, the magnitude of the length of the side of the smaller

square.

asurfaceisirreducibly doubly extended. Similarly, avolume
may be bounded by surfaces, which in turn are bounded by
lines, but, itisirreducibly triply extended.

Thus, aunitline, square, or cube, may al be characterized
by the number One, but each One, is a species of adifferent
power.

Plato’s circle also emphasized, that this succession of
magnitudes of higher powers, was generated by a succession
of different types of action. Specifically, a simply extended
maghitude was produced from linear action, doubly ex-
tended magnitudes from circular action,and triply extended
magnitudes from extended circular actiorsuch as the rota-
tional actions which produce a cone, cylinder, or torus. This
is presented, pedagogically, by Plato in the Menodialogue,
with respect to doubly extended magnitudes, and in the
Timaeuswith respect to the uniqueness of the five regular
solids, and the problem of doubling the cube. Plato’ scollabo-
rator, Archytus, demonstrated that the magnitude with which
a cube is doubled, is not generated by circular action, but
from extended circular action, i.e., conic sections (see Fig-
ure?2).

It fell to Apollonius of Perga (262-200 B.C.) to present
a full exposition of the generation of magnitudes of higher
powers, inhiswork on Conics Hisapproach wasexhaustively
to investigate the generation of doubly and triply extended
magnitudes, which he distinguished into plane (circle/line)
and solid (ellipse, parabola, hyperbola) loci.

As Abraham Gotthelf Kastner indicates in his History of
Mathematics(1797), the investigation of the relationships
among higher powers, gaverisetowhat becameknown by the
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FIGURE 1c
Doubling the Cube

@2)

The magnitude which has tipewer to produce a cube of double
volume, is different than the magnitude which hagitweer to

double a square, or a line. It is the smaller of two geometric means

between the two cubes. This magnitude is incommensurable to
both those lower magnitudes, the square and the line.

FIGURE 2
Archytus’ Construction To Double the Cube
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Archytus developed a construction to find two geometric means

between two magnitudes. The longer magnitude is AC, which is the

diameter of a circle. That circle is rotated around A to form a
torus. A cylinder is then produced perpendicular to the torus,

whose diameter is also AC. The shorter magnitude AB is drawn as

a chord of a cross section of the torus. AB is extended until it
intersects the cylinder, forming a triangle, which when rotated,
produces a cone. All three surfaces intersect at point P.

Arabic word algebra; and, from Gottfried Wilhelm Leibniz
(1644-1716) on, asanalysis Here, the relationship of magni-
tudes of the second power (squares) and the third power
(cubes) were investigated in the form of quadratic and cubic
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algebraic eguations, respectively. Meanwhile, equations of
higher than the third degree took on a formal significance,
but lacked the physical connection which could be seen in
quadratics and cubics.

Girolamo Cardan (1501-1576), and later, Leibniz,
showed that therewasa*hole” inall formsof algebraic equa-
tions, as indicated by the appearance of the square roots of
negative numbers, as solutions to such equations. Peering
into this“hole,” Leibniz recognized that algebra could teach
nothing about physics, but, that a general physical principle
underlay all algebraic equations, of whatever power.

Writing in about 1675 to Christiaan Huyghens (1629-
1695) on the squareroots of negative numbers, Leibniz added
that he had invented a machine which produced exactly the
required action of thisgeneral physical principle:

“1t seemsthat after thisinstrument, thereisalmost nothing
more to be desired for the use which algebra can or will be
ableto havein mechanicsand in practice. It isbelievablethat
thiswas the aim of the geometry of the ancients (at least that
of Apollonius) and the purpose of |oci that he had introduced,
because he had recognized that a few lines determine in-
stantly, what long cal cul ationsin numbers could achieve only
after long work capable of discouraging the most firm.”

Whilefinding the physical action that generated asucces-
sion of higher powers, Leibniz |eft open the question of what
physical action produced the sguare roots of negative
numbers.

Gauss's Proof of the Fundamental Theorem

By the time Gauss left Gottingen, he had already devel-
oped a concept of the physical reality of the square roots of
negative numbers, which hecalled, complex numbers. Adopt-
ing the method of Plato’ s cave metaphor, from The Republic,
Gauss understood his complex numbers to be shadows re-
flecting a complex of physical actions (action acting on ac-
tion). This complex action reflected a power greater than the
triply extended action that characterizesthe manifold of visi-
ble space.

It was Gauss' unique contribution, to devise a metaphor,
fromwhichto represent these higher formsof physical action,
so those actions could be represented, by their reflections, in
thevisible domain.

In his 1799 dissertation, Gauss brilliantly chose to de-
velop hismetaphor, polemically, on themost vulnerableflank
of his opponents’ algebraic equations. Like Leibniz, Gauss
rejected the deductive approach of investigating algebraic
equations on their own terms, insisting that it was physica
action that determined the characteristics of the equations.

A simple example will help illustrate the point. Think of
the physical meaning of theequationx?=4. Obviously, xrefers
to a side of a square whose area is 4. Thus, 2 is a solution
to this equation. Now, think of the physical meaning of the
equation x>=—4. From a formal deductive standpoint, this
equation refersto the side of a square whose areais —4. But,
how can a square have an area of —4? Formally, the second
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FIGURE 3
The Principle of Squaring

poode.

YoB . a C

Theprinciple of “ squaring” involves doubling the angle of
rotation and squaring the length. Angle 3 is double angle a and
angleyisdouble angle 3. Also, the length of B isthe square of A
and thelength of C isthe square of B.

equation can be solved by introducing the number 2 /-1, or
2i, whichwhen squared, equals—4. But, the question remains,
what isthe physical meaning of /=17

One answer is to say that 1/—1 has no physical meaning,
and thus the equation x>=—4 has no solution. To this, Euler
and Lagrange added the sophistry, richly ridiculed by Gauss
in hisdissertation, that the equation x?=—4 has a solution, but
the solution isimpossible!

Gaussdemonstrated the physical meaning of the+/—1, not
inthevisible domain of squares, but in the cognitive domain,
of the principle of squaring.

Thiscan beillustrated pedagogically, by drawingasquare
whoseareawe' |l call 1. Thendraw thediagonal of that square,
and draw anew square using that diagonal asaside. Thearea
of the new square will be 2. Now, repeat this action, again to
generate asquare whose areais 4 (Figur e 3).

What istheprincipleof squaring soillustrated? Theaction
that generated the magnitude which produced the square
whose area is 2, was a rotation of 45° and an extension of
length from 1 to the /2. To produce the square whose areais
4, that rotation of 45° was doubled to 90°, and the extension
was squared to become 2. Repeat this process several times,
to illustrate that the principle of sguaring, can be thought of
as the combined physical action, of doubling a rotation and
squaring the length. The sgquare root is simply the reverse
action. That is, halving the angle of rotation and decreasing
the length by the squareroot.

Now draw acircle and adiameter, and apply this physical
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FIGURE 4
Squaring A Complex Number

Thegeneral principle of “ squaring” can be carried out on a
circle. zZ%is produced from z by doubling the angle a and squaring
the distance fromthe center of thecircleto z.

action of squaring to every point on the circle. That is, take
every point onthecircumferenceof thecircle. Draw theradius
connecting that point to the center of the circle. That radius
makes an angle with the diameter you drew. To “square” that
point, double the angle between the radius and the diameter,
and square the length. Repeat this action with several points.
Soon you will be able to see that the points on the first circle
all map to points on another concentric circle, whose radius
isthe square of the original circle. But, it gets curiouser and
curiouser. Sinceyou doubled theangle each timeyou squared
a point, the original circle will map to the “squared” circle
twice (Figure4)!

There is aphysical example that illustrates this process.
Take a bar magnet and rotate a compass around the magnet.
Asthe compass movesfromthe North to the South pole of the
magnet (180°), the compass needle will make one complete
revolution (360°). As it moves from the South pole back to
the North, the needle will make another complete revolution.
In effect, the bar magnet “ squares’ the compass!

Gauss associated his complex numbers with this type of
compound physical action (rotation combined with exten-
sion). He made them visible, metaphorically, as spiral action
projected onto a surface. Every point on that surface repre-
sentsacomplex number. Each number denotesauniquecom-
bination of rotation and extension. The point of origin of the
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FIGURE 5
Gauss’s Complex Domain
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action ultimately refersto a physical singularity, such asthe
lowest point of the catenary, or the poles of therotating Earth,
or the center of the bar magnet.

In the above example, the original circle becomes a unit
circle in the complex domain. The center of the circleisthe
origin, denoted by 0, the ends of the diameter are denoted by
land-1. Thesguareroot of —1lisfoundby halvingtherotation
between 1 and -1, and reducing the radius by the square root.
Think carefully, and you will see that 1/-1 and — /-1 are
represented by the pointsonthe circumferencewhicharehalf-
way between 1 and -1 (Figureb).

Gauss demonstrated that all algebraic powers, of any de-
gree, when projected onto his complex domain, could berep-
resented by an action similar to that just demonstrated for
squaring. For example, the action of cubing acomplex num-
ber isaccomplished by tripling the angle of rotation and cub-
ing the length. This maps the original circle three times onto
a circle whose radius is the cube of the original circle. The
action associ ated with the bi-quadratic power (fourth degree)
involves quadrupling the angle of rotation and squaring the
square of the length. This will map the original circle four
timesonto acirclewhose radiusisincreased by the square of
the square, and so forth for the all higher powers.

Thus, eventhough themanifoldsof action associated with
these higher powersexist outsidethetriply extended manifold
of visible space, the characteristic of action which produced
them, was brought into view, by Gauss, in his complex
domain.
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