
goals are achieved only on the condition that the student
works through Gauss’s own cognitive experience, both in
making the discovery and in refuting reductionism generi-
cally. It is the inner, cognitive sense of “ I know,” rather than “ I
have been taught to believe,” which must become the clearly
understood principle of a revived policy of a universalized
Classical humanist education.

Once a dedicated student achieves the inner cognitive
sense of “ I know this,” he, or she has gained a bench-mark
against which to measure many other things.

Bringing the Invisible
To the Surface
by Bruce Director

FIGURE 1

x

x2x3

x4

x5

x6

x7

x8

x
9

A succession of algebraic powers is generated by a self-similar
This is the second half of a pedagogical exercise on the great spiral. For equal angles of rotation, the lengths of the
mathematician Carl Gauss’ delving into the Fundamental corresponding radii are increased to the next power.
Theorem of Algebra—something all high school graduates
think they have learned. The first part, “The Fundamental
Theorem: Gauss’ Declaration of Independence,” was pub- Gauss’ concept of the complex domain. As Gauss himself

stated, unequivocally, the complex domain does not meanlished in EIR of April 12.
Euler’s formal, superficial concept of “ impossible” or imagi-
nary numbers, as taught by “experts” since. Rather, Gauss’When Carl Friedrich Gauss in 1798 criticized the state of

mathematics for its “shallowness,” he spoke literally; and not concept of the complex domain, like Fermat’s principle of
least time, brings to the surface, a principle that was there allonly about his time, but also ours. Then, as now, it had become

popular for academics to ignore, and even ridicule, any effort along, but hidden from view.
As Gauss emphasized in his jubilee re-working of histo search for universal physical principles, restricting the

province of scientific inquiry to the seemingly more practical 1799 dissertation, the concept of the complex domain is a
“higher domain,” independent of all a priori concepts oftask, of describing only what’s visible on the surface. Ironi-

cally, as Gauss demonstrated in his 1799 doctoral dissertation space. Yet, it is a domain, “ in which one cannot move without
the use of language borrowed from spatial images.”on the fundamental theorem of algebra, what’s on the surface

is revealed only if one knows what’s underneath.
Gauss’ method was ancient, made famous in Plato’s meta- The Algebraic and the Transcendental

The issue for him, as for Gottfried Leibniz, was to find aphor of the cave, given new potency by Johannes Kepler’s
application of Nicholas of Cusa’s method of On Learned Ig- general principle that characterized what had become known

as “algebraic” magnitudes. These magnitudes, associated ini-norance. For them, the task of the scientist was to bring into
view, the underlying physical principles that could not be tially with the extension of lines, squares, and cubes, all fell

under Plato’s concept of dunamais, or powers.viewed directly—the unseen that guided the seen.
Take the case of Fermat’s discovery of the principle, that Leibniz had shown, that while the domain of all “alge-

braic” magnitudes consisted of a succession of higher powers,refracted light follows the path of least time, instead of the
path of least distance followed by reflected light. The princi- this entire algebraic domain was itself dominated by a domain

of a still higher power, which Leibniz called “ transcendental.”ple of least distance is one that lies on the surface, and can be
demonstrated in the visible domain. On the other hand, the The relationship of the lower domain of algebraic magni-

tudes, to the higher non-algebraic domain of transcendentalprinciple of least time exists “behind,” so to speak, the visible;
brought into view only in the mind. On further reflection, it magnitudes, is reflected in what Jakob Bernoulli discovered

about the equi-angular spiral (see Figure 1).is clear, that the principle of least time was there all along,
controlling, invisibly, the principle of least distance. In Leibniz, with Jakob’s brother Johann Bernoulli, subse-

quently demonstrated that this higher, transcendental domainPlato’s terms of reference, the principle of least time is of a
“higher power” than the principle of least distance. does not exist as a purely geometric principle, but originates

from the physical action of a hanging chain, whose geometricFermat’s discovery is a useful reference point for grasping
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FIGURE 2

An example of the
three solutions to
the trisection of an
angle.

FIGURE 3
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glance, a line whose length is −2 seems as impossible as a
square whose area is −4. Yet, if you draw a square of area 2,
you will see that there are two diagonals, both of which have
the power to produce a new square whose area is 4. These two
magnitudes are distinguished from one another only by their
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direction, so one is denoted as 2 and the other as −2.
Leibniz’ construction of the algebraic powers from the hanging

Now, extend this investigation to the cube. In the algebraicchain, or catenary curve.
equation x3=8, there appears to be only one number, 2, which
satisfies the equation, and this number signifies the length of
the edge of a cube whose volume is 8. This appears to be the
only solution to this equation since (−2)(−2)(−2)=−8. Theshape Christiaan Huygens called a catenary (see Figure 2).

Thus, the physical universe itself demonstrates that the “alge- anomaly that there are two solutions, which appeared for the
case of a quadratic equation, seems to disappear, in the casebraic” magnitudes associated with extension, are not gener-

ated by extension. Rather, the algebraic magnitudes are gen- of the cube, for which there appears to be only one solution.
erated from a physical principle that exists beyond simple
extension, in the higher, transcendental, domain. Trisecting an Angle

Not so fast. Look at another geometrical problem which,Gauss, in his proofs of the fundamental theorem of alge-
bra, showed that even though this transcendental physical when stated in algebraic terms, poses the same paradox: the

trisection of an arbitrary angle. Like the doubling of the cube,principle was outside the domain of the visible, it nevertheless
cast a shadow that could be made visible in what Gauss called Greek geometers could not find a means for equally trisecting

an arbitrary angle, from the principle of circular action itself.the complex domain.
As indicated in part one of this article, the discovery of The several methods discovered (by Archimedes, Eratos-

thenes, and others), to find a general principle of trisecting ana general principle for algebraic magnitudes was found, by
looking through the “hole” represented by the square roots of angle, were similar to those found, by Plato’s collaborators,

for doubling the cube. That is, this magnitude could not benegative numbers. These square roots appeared as solutions
to algebraic equations, but lacked any apparent physical constructed using only a circle and a straight line, but it re-

quired the use of extended circular action, such as conicalmeaning. For example, in the algebraic equation x2=4, x signi-
fies the side of a square whose area is 4; while, in the equation action. But, trisecting an arbitrary angle presents another type

of paradox which is not so evident in the problem of doublingx2=−4, the x signifies the side of a square whose area is −4, an
apparent impossibility. the cube. To illustrate this, make the following experiment:

Draw a circle (Figure 3). For ease of illustration, markFor the first case, it is simple to see, that a line whose
length is 2 would be the side of the square whose area is 4. off an angle of 60°. It is clear that an angle of 20° will trisect

this angle equally. Now add one circular rotation to the 60°However, from the standpoint of the algebraic equation, a line
whose length is −2, also produces the desired square. At first angle, making an angle of 420°. It appears these two angles
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pears to be only one visible solution, but two “ imaginary”
solutions: −1−(√3)(√−1); and −1 + (√3)(√−1).

Biquadratic equations, such as x4=16, that seem to have no
visible meaning themselves, have four solutions, two “ real” (2
and −2) and two “ imaginary” (2 √−1 and −2√−1).

Things get even more confused for algebraic magnitudes
of still higher powers. This anomaly poses the question that
Gauss resolved in his proof of what he called the fundamental
theorem of algebra: How many solutions are there for any
algebraic equation?

The “shallow” -minded mathematicians of Gauss’ day,
such as Euler, Lagrange, and D’Alembert, took the superficial
approach of asserting that any algebraic equation has as many
solutions as it has powers, even if those solutions were “ im-The unit of action in
possible,” such as the square roots of negative numbers. (ThisGauss’ complex

domain. sophist’s argument is analogous to saying, “There is a differ-

FIGURE 4

1–1

−1

−1−

−1

−1−√–

√–

ence between man and beast; but, this difference is mean-
ingless.” )

are essentially the same. But, when 420° is divided by 3, we
Shadows of Shadows: The Complex Domainget an angle of 140°. Add another 360° rotation and we get to

Gauss polemically exposed this fraud for the sophistry itthe angle of 780°, which appears to be exactly the same as the
was. “ If someone would say a rectilinear equilateral rightangles of 60° and 420°. Yet, when we divide 780° by 3 we
triangle is impossible, there will be nobody to deny that. But,get 260°. Keep this up, and you will see that the same pattern
if he intended to consider such an impossible triangle as ais repeated over and over again.
new species of triangles and to apply to it other qualities ofLooked at as a “sense certainty,” the 60° angle can be
triangles, would anyone refrain from laughing? That wouldtrisected by only one angle, the 20° angle. Yet, when looked
be playing with words, or rather, misusing them.”at beyond sense certainty, there are clearly three angles that

For, Gauss, no magnitude could be admitted, unless its“solve” the problem.
principle of generation was demonstrated. For magnitudesThis illustrates another “hole” in the algebraic determina-
associated with the square roots of negative numbers, thattion of magnitude. In the case of quadratic equations, there

seem to be two solutions to each problem. In some cases, such principle was the complex physical action of rotation, com-
as x2=4, those solutions seem to have a visible existence; bined with extension. Gauss called the magnitudes generated

by this complex action, “complex numbers.” Each complexwhile for the case, x2=−4, there are two solutions, 2 √−1 and
number denoted a quantity of combined rotational, and ex-−2√−1, both of which seem to be “ imaginary,” having no
tended action.physical meaning. In the case of cubic equations, sometimes

The unit of action in Gauss’ complex domain is a circle,there are three visible solutions, such as in the case of trisect-
ing an angle. But in the case of doubling the cube, there ap- which is one rotation, with an extension of one (unit length).

FIGURE 5

In (a) the lengths of the
radii are squared as the
angle of rotation
doubles. In (b) the
lengths of the radii are
cubed as the angle of
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FIGURE 6
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Squaring a complex number. Cubing a complex number.

In this domain, the number 1 signifies one complete rotation;
−1, half a rotation; √−1, one-fourth of a rotation; and −√−1,
three-fourths of a rotation (Figure 4).

These “shadows of shadows,” as he called them, were
only a visible reflection of a still higher type of action, that
was independent of all visible concepts of space. These higher
forms of action, although invisible, could nevertheless be
brought into view as a projection onto a surface.

Gauss’ approach is consistent with that employed by the
circles of Plato’s Academy, as indicated by their use of the
term epiphanea to indicate a surface (it comes from the same
root as the word, “epiphany” ). The concept indicated by the
word epiphanea is, “ that on which something is brought
into view.”

From this standpoint, Gauss demonstrated, in his 1799
dissertation, that the fundamental principle of generation of
any algebraic equation, of no matter what power, could be
brought into view, “epiphanied,” so to speak, as a surface in
the complex domain. These surfaces were visible representa-
tions, not—as in the cases of lines, squares, and cubes—of
what the powers produced, but of the principle that produced
the powers.

To construct these surfaces, Gauss went outside the sim-
ple visible representation of powers—such as squares and
cubes—by seeking a more general form of powers, as exhib-
ited in the equi-angular spiral (Figure 5). Here, the generation

FIGURE 8
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of a power, corresponds to the extension produced by an angu- The sine of angle x is the line zP and the cosine of x is 0P. The sine
of 2x is the line QP′ and the cosine is OP′.lar change. The generation of square powers, for example,
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corresponds to the extension that results
from a doubling of the angle of rotation,
within the spiral (5a); and the genera-
tion of cubed powers corresponds to the
extension that results from tripling the
angle of rotation, within that spiral (5b).
Thus, it is the principle of squaring that
produces square magnitudes, and the
principle of cubing that produces
cubics.

In Figure 6, the complex number z
is “squared” when the angle of rotation
is doubled from x to 2x and the length
squared from A to A2. In doing this, the
smaller circle maps twice onto the
larger, “squared” circle. In Figure 7, the
same principle is illustrated with respect
to cubing. Here the angle x is tripled to
3x, and the length A is cubed to A3. In
this case, the smaller circle maps three
times onto the larger, “cubed” circle.
And so on for the higher powers. The
fourth power maps the smaller circle
four times onto the larger. The fifth
power, five times, and so forth.

This gives a general principle that
determines all algebraic powers: From
this standpoint, all powers are reflected
by the same action. The only thing that
changes with each power, is the number
of times that action occurs. Thus, each

FIGURE 9
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power is distinguished from the others,
Variations of the sine and cosine from the squaring of a complex number.not by a particular magnitude, but by a

topological characteristic.
In his doctoral dissertation, Gauss

used this principle to generate surfaces that expressed the complex of actions as a surface (Figures 10, 11, 12). Each
point on the surface is determined so that its height above theessential characteristic of powers in an even more fundamen-

tal way. Each rotation and extension produced a characteristic flat plane, is equal to the distance from the center, times the
sine of the angle of rotation, as that angle is increased by theright triangle. The vertical leg of that triangle is the sine and

the horizontal leg of that triangle is the cosine (Figure 8). effect of the power. The power of any point in the flat plane,
is represented by the height of the surface above that point.There is a cyclical relationship between the sine and cosine

which is a function of the angle of rotation. When the angle Thus, as the numbers on the flat surface move outward from
the center, the surface grows higher according to the power.is 0, the sine is 0 and the cosine is 1. When the angle is 90°,

the sine is 1 and the cosine is 0. Looking at this relationship At the same time, as the numbers rotate around the center, the
sine will pass from positive to negative. Since the numbersfor an entire rotation, the sine goes from 0 to 1 to 0 to −1 to 0;

while the cosine goes from 1 to 0 to −1 to 0 and back to 1 on the surface are the powers of the numbers on the flat plane,
the number of times the sine will change from positive to(Figure 9).

In Figure 9, as z moves from 0 to 90°, the sine of the angle negative, depends on how much the power multiplies the
angle (double for square powers, triple for cubics, etc.).varies from 0 to 1; but at the same time, the angle for z2 goes

from 0 to 180°, and the sine of z2 varies from 0 to 1 and back Therefore, each surface will have as many “humps” as the
equation has dimensions. Consequently, a quadratic equationto 0. Then, as z moves from 90° to 180°, the sine varies from

1 back to 0, but the angle for z2 has moved from 180° to 360°, will have two “humps” up and two “humps” down (Figure
10). A cubic equation will have three “humps” up and threeand its sine has varied from 0 to −1 to 0. Thus, in one half

rotation for z, the sine of z2 has varied from 0 to 1 to 0 to “humps” down. (Figure 11). A fourth-degree equation will
have four “humps” in each direction (Figure 12); and so on.−1 to 0. In his doctoral dissertation, Gauss represented this
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Gauss specified the construction of two surfaces for each the highest power. Since each of these surfaces will be rotated
90° to each other, these curves will intersect each other, andalgebraic equation, one based on the variations of the sine and

the other based on the variations of the cosine (Figure 13). the number of intersections will correspond to the number of
powers (Figure 14). If the flat plane is considered to be zero,Each of these surfaces will define definite curves where the

surfaces intersect the flat plane. The number of curves will these intersections will correspond to the solutions, or “ roots”
of the equation. This proves that an algebraic equation hasdepend on the number of “humps,” which in turn depend on

as many roots as its highest power.
Step back and look at this work.

These surfaces were produced, notFIGURE 10 FIGURE 11 FIGURE 12

from visible squares or cubes, but
from the general principle of squar-
ing, cubing, and higher powers. They
represent, metaphorically, a princi-
ple that manifests itself physically,
but cannot be seen. By projecting this
principle—the general form of
Plato’s powers—onto these complex
surfaces, Gauss has brought the in-
visible into view, and made intelligi-
ble what is incomprehensible in the
superficial world of algebraic for-
malism.

The effort to make intelligible
the implications of the complex do-
main was a focus for Gauss through-
out his life. Writing to his friend Han-
sen on Dec. 11, 1825, Gauss said:
“These investigations lead deeply

A Gaussian surface for theA Gaussian surface for the into many others, I would even say,A Gaussian surface for the
third power.second power. fourth power. into the Metaphysics of the theory of

space, and it is only with great diffi-
culty can I tear myself away from the

results that spring from it, as, for example, the true metaphys-
FIGURE 13

ics of negative and complex numbers. The true sense of the
square root of −1 stands before my mind fully alive, but it
becomes very difficult to put it in words; I am always only
able to give a vague image that floats in the air.”

It was here, that Bernhard Riemann began.

FIGURE 14
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(a) combines the surfaces based on the variations of the sine and
cosine for the second power. (b) combines the surfaces based on (a) is the intersection of the surfaces in 13(a) with the flat plane.

(b) is the intersection of the surfaces in 13(b) with the flat plane.the variations of the sine and cosine for the third power.
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