goals are achieved only on the condition that the student
works through Gauss's own cognitive experience, both in
making the discovery and in refuting reductionism generi-
caly. Itistheinner, cognitivesenseof “| know,” rather than*“|
have been taught to believe,” which must become the clearly
understood principle of a revived policy of a universalized
Classical humanist education.

Once a dedicated student achieves the inner cognitive
sense of “I know this,” he, or she has gained a bench-mark
against which to measure many other things.

Bringing the Invisible
To the Surface

by Bruce Director

Thisisthe second half of a pedagogical exercise onthegreat
mathematician Carl Gauss delving into the Fundamental
Theorem of Algebra—something all high school graduates
think they have learned. The first part, “ The Fundamental
Theorem: Gauss Declaration of Independence,” was pub-
lished in EIR of April 12.

When Carl Friedrich Gauss in 1798 criticized the state of
mathematicsfor its“ shallowness,” he spokeliterally; and not
only about histime, but alsoours. Then, asnow, it had become
popular for academicstoignore, and evenridicule, any effort
to search for universal physical principles, restricting the
province of scientific inquiry to the seemingly more practical
task, of describing only what’s visible on the surface. Ironi-
cally, asGaussdemonstrated in his1799 doctoral dissertation
on the fundamental theorem of algebra, what’ son the surface
isrevealed only if one knowswhat’s underneath.

Gauss' method wasancient, madefamousinPlato’ smeta-
phor of the cave, given new potency by Johannes Kepler's
application of Nicholas of Cusa’ s method of On Learned 1g-
norance. For them, the task of the scientist was to bring into
view, the underlying physical principles that could not be
viewed directly—the unseen that guided the seen.

Takethe case of Fermat’ s discovery of the principle, that
refracted light follows the path of least time, instead of the
path of least distance followed by reflected light. The princi-
ple of least distanceisonethat lies on the surface, and can be
demonstrated in the visible domain. On the other hand, the
principleof least timeexists“behind,” soto speak, thevisible;
brought into view only in the mind. On further reflection, it
is clear, that the principle of least time was there al along,
controlling, invisibly, the principle of least distance. In
Plato’s terms of reference, the principle of least timeis of a
“higher power” than the principle of |east distance.

Fermat’ sdiscovery isauseful referencepoint for grasping
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FIGURE 1
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A succession of algebraic powersis generated by a self-similar
spiral. For equal angles of rotation, the lengths of the
corresponding radii are increased to the next power.

Gauss concept of the complex domain. As Gauss himself
stated, unequivocally, the complex domain does not mean
Euler’sformal, superficial concept of “impossible” or imagi-
nary numbers, as taught by “experts’ since. Rather, Gauss
concept of the complex domain, like Fermat’s principle of
least time, brings to the surface, aprinciple that wasthere all
along, but hidden from view.

As Gauss emphasized in his jubilee re-working of his
1799 dissertation, the concept of the complex domain is a
“higher domain,” independent of all a priori concepts of
space. Y et, itisadomain, “inwhich one cannot movewithout
the use of language borrowed from spatial images.”

TheAlgebraic and the Transcendental

Theissue for him, asfor Gottfried Leibniz, wasto find a
general principlethat characterized what had become known
as"algebraic” magnitudes. These magnitudes, associated ini-
tially with the extension of lines, squares, and cubes, all fell
under Plato’ s concept of dunamais, or powers.

Leibniz had shown, that while the domain of all “age-
braic” magnitudesconsi sted of asuccession of higher powers,
thisentirealgebraic domainwasitself dominated by adomain
of astill higher power, which Leibniz called “transcendental .”
The relationship of the lower domain of algebraic magni-
tudes, to the higher non-algebraic domain of transcendental
maghnitudes, is reflected in what Jakob Bernoulli discovered
about the equi-angular spiral (see Figure 1).

Leibniz, with Jakob’s brother Johann Bernoulli, subse-
guently demonstrated that this higher, transcendental domain
does not exist as a purely geometric principle, but originates
fromthe physical action of ahanging chain, whose geometric
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LeibniZ construction of the algebraic powers fromthe hanging
chain, or catenary curve.

shape Christiaan Huygens called a catenary (see Figure 2).
Thus, thephysical universeitself demonstratesthat the*alge-
braic” magnitudes associated with extension, are not gener-
ated by extension. Rather, the algebraic magnitudes are gen-
erated from a physical principle that exists beyond simple
extension, in the higher, transcendental, domain.

Gauss, in his proofs of the fundamental theorem of alge-
bra, showed that even though this transcendental physical
principlewasoutsidethedomain of thevisible, it nevertheless
cast ashadow that could be madevisibleinwhat Gausscalled
the complex domain.

As indicated in part one of this article, the discovery of
a genera principle for algebraic magnitudes was found, by
looking through the“hole” represented by the square roots of
negative numbers. These square roots appeared as solutions
to algebraic equations, but lacked any apparent physical
meaning. For exampl e, inthe algebraic equation x=4, x signi-
fiesthe side of asquarewhoseareais4; while, inthe equation
x2=—4, the x signifiesthe side of asquare whose areais—4, an
apparent impossibility.

For the first case, it is simple to see, that a line whose
length is 2 would be the side of the square whose area is 4.
However, from the standpoint of theal gebrai c equation, aline
whose length is -2, also produces the desired square. At first
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the power to produce anew squarewhose areais4. Thesetwo
magnitudes are distinguished from one ancther only by their
direction, so oneisdenoted as 2 and the other as -2.

Now, extend thisinvestigationtothecube. Inthealgebraic
equation x*=8, there appearsto be only one number, 2, which
sati sfies the equation, and this number signifies the length of
the edge of a cube whose volumeis 8. This appearsto bethe
only solution to this equation since (-2)(-2)(-2)=—8. The
anomaly that there are two solutions, which appeared for the
case of a quadratic equation, seems to disappear, in the case
of the cube, for which there appears to be only one solution.

Trisectingan Angle

Not so fast. Look at another geometrical problem which,
when stated in algebraic terms, poses the same paradox: the
trisection of an arbitrary angle. Likethe doubling of the cube,
Greek geometers could not find ameansfor equally trisecting
an arbitrary angle, from the principle of circular action itself.
The severa methods discovered (by Archimedes, Eratos-
thenes, and others), to find ageneral principle of trisecting an
angle, were similar to those found, by Plato’s collaborators,
for doubling the cube. That is, this magnitude could not be
constructed using only a circle and a straight line, but it re-
quired the use of extended circular action, such as conical
action. But, trisecting an arbitrary angle presentsanother type
of paradox which isnot so evident in the problem of doubling
the cube. To illustrate this, make the following experiment:

Draw acircle (Figure 3). For ease of illustration, mark
off an angle of 60°. It is clear that an angle of 20° will trisect
this angle equally. Now add one circular rotation to the 60°
angle, making an angle of 420°. It appears these two angles
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FIGURE 4

The unit of actionin
Gauss complex
domain.

are essentially the same. But, when 420° is divided by 3, we
get an angle of 140°. Add another 360° rotation and we get to
theangle of 780°, which appearsto be exactly the same asthe
angles of 60° and 420°. Y et, when we divide 780° by 3 we
get 260°. Keep thisup, and you will seethat the same pattern
isrepeated over and over again.

Looked at as a “sense certainty,” the 60° angle can be
trisected by only one angle, the 20° angle. Y et, when looked
at beyond sense certainty, there are clearly three angles that
“solve’ the problem.

Thisillustratesanother “hole” in the algebraic determina-
tion of magnitude. In the case of quadratic equations, there
seemto betwo solutionsto each problem. In some cases, such
as x*=4, those solutions seem to have a visible existence;
whilefor the case, x*=-4, there are two solutions, 2 /-1 and
—-2~/-1, both of which seem to be “imaginary,” having no
physical meaning. In the case of cubic equations, sometimes
there arethree visible solutions, such asin the case of trisect-
ing an angle. But in the case of doubling the cube, there ap-

pears to be only one visible solution, but two “imaginary”
solutions: =1-(v/3)(+/-1); and -1 + (1/3)(/-1).

Biquadratic equations, such asx*=16, that seemtohaveno
visiblemeaning themsel ves, havefour solutions, two“real” (2
and —2) and two “imaginary” (2 /-1 and —2,/-1).

Things get even more confused for agebraic magnitudes
of still higher powers. This anomaly poses the question that
Gaussresolvedin hisproof of what he called the fundamental
theorem of algebra: How many solutions are there for any
algebraic equation?

The “shallow”-minded mathematicians of Gauss day,
suchasEuler, Lagrange, and D’ Alembert, took the superficial
approach of asserting that any algebraic equation has as many
solutions as it has powers, even if those solutions were “im-
possible,” such asthe squareroots of negative numbers. (This
sophist’sargument is analogousto saying, “ Thereisadiffer-
ence between man and beast; but, this difference is mean-
ingless.”)

Shadows of Shadows: The Complex Domain

Gauss polemically exposed this fraud for the sophistry it
was. “If someone would say a rectilinear equilateral right
triangleisimpossible, therewill be nobody to deny that. But,
if he intended to consider such an impossible triangle as a
new species of triangles and to apply to it other qualities of
triangles, would anyone refrain from laughing? That would
be playing with words, or rather, misusing them.”

For, Gauss, no magnitude could be admitted, unless its
principle of generation was demonstrated. For magnitudes
associated with the square roots of negative numbers, that
principle was the complex physica action of rotation, com-
bined with extension. Gauss called the magnitudes generated
by this complex action, “complex numbers.” Each complex
number denoted a quantity of combined rotational, and ex-
tended action.

The unit of action in Gauss' complex domainisacircle,
which is one rotation, with an extension of one (unit length).

FIGURE 5
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(b)

In (a) the lengths of the
radii are squared asthe
angle of rotation
doubles. In (b) the
lengths of the radii are
NEE cubed as the angle of
rotation triples.
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FIGURE 6
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Sguaring a complex number.

In thisdomain, the number 1 signifies one complete rotation;
-1, half arotation; /-1, one-fourth of arotation; and —/-1,
three-fourths of arotation (Figure 4).

These “shadows of shadows,” as he called them, were
only avisible reflection of a still higher type of action, that
wasindependent of all visibleconcepts of space. Thesehigher
forms of action, although invisible, could nevertheless be
brought into view as a projection onto a surface.

Gauss' approach is consistent with that employed by the
circles of Plato’s Academy, as indicated by their use of the
term epiphanea to indicate a surface (it comes from the same
root as the word, “epiphany”). The concept indicated by the
word epiphanea is, “that on which something is brought
into view.”

From this standpoint, Gauss demonstrated, in his 1799
dissertation, that the fundamental principle of generation of
any algebraic equation, of no matter what power, could be
brought into view, “epiphanied,” so to speak, asasurfacein
the complex domain. These surfaceswere visible representa-
tions, not—as in the cases of lines, squares, and cubes—of
what the powers produced, but of the principlethat produced
the powers.

To construct these surfaces, Gauss went outside the sim-
ple visible representation of powers—such as sguares and
cubes—hy seeking amore general form of powers, as exhib-
itedintheequi-angular spiral (Figureb). Here, thegeneration
of apower, correspondsto theextension produced by an angu-
lar change. The generation of square powers, for example,
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FIGURE 7

e

Cubing a complex number.

FIGURE 8

The sine of angle x istheline zZP and the cosine of xisOP. The sine
of 2xistheline QP' and the cosineis OP'.
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correspondsto the extension that results
from adoubling of theangle of rotation,
within the spiral (5a); and the genera-
tion of cubed powers correspondsto the
extension that results from tripling the
angleof rotation, withinthat spiral (5b).
Thus, it isthe principle of squaring that
produces square magnitudes, and the
principle of cubing that produces
cubics.

FIGURE 9

@ (b)

In Figure 6, the complex humber z
is“squared” when the angle of rotation
is doubled from x to 2x and the length
squared from A to A2. In doing this, the
smaller circle maps twice onto the
larger, “squared” circle. InFigure7,the
sameprincipleisillustrated with respect
to cubing. Here the angle x is tripled to
3%, and the length A is cubed to A% In
this case, the smaller circle maps three
times onto the larger, “cubed” circle.
And so on for the higher powers. The
fourth power maps the smaller circle
four times onto the larger. The fifth

(b)

power, fivetimes, and so forth.

This gives a general principle that
determines all algebraic powers. From
this standpoint, al powers are reflected
by the same action. The only thing that
changeswith each power, isthe number
of times that action occurs. Thus, each

power is distinguished from the others,
not by a particular magnitude, but by a
topological characteristic.

In his doctoral dissertation, Gauss
used this principle to generate surfaces that expressed the
essential characteristic of powersin an even more fundamen-
tal way. Each rotation and extension produced acharacteristic
right triangle. The vertical leg of that triangleis the sine and
the horizontal leg of that triangle is the cosine (Figure 8).
There is a cyclical relationship between the sine and cosine
which is a function of the angle of rotation. When the angle
is0, thesineis 0 and the cosineis 1. When the angle is 90°,
thesineis 1 and the cosineis 0. Looking at this relationship
for an entirerotation, the sinegoesfrom0to 1to0to-1t00;
while the cosine goes from 1 to 0 to —1 to 0 and back to 1
(Figure9).

InFigure9, aszmovesfrom 0to 90°, thesine of theangle
variesfrom 0to 1; but at the same time, the angle for Z goes
from 0 to 180°, and the sine of Z2 varies from 0 to 1 and back
to 0. Then, as zmoves from 90° to 180°, the sine varies from
1 back to 0, but the angle for z2 has moved from 180° to 360°,
and its sine has varied from 0 to -1 to 0. Thus, in one half
rotation for z, the sine of Z2 has varied from 0 to 1 to O to
-1t0 0. In his doctoral dissertation, Gauss represented this
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Variations of the sine and cosine from the squaring of a complex number.

complex of actions as a surface (Figures 10, 11, 12). Each
point on the surfaceis determined so that its height abovethe
flat plane, is equal to the distance from the center, times the
sine of the angle of rotation, asthat angle isincreased by the
effect of the power. The power of any point in the flat plane,
is represented by the height of the surface above that point.
Thus, as the numbers on the flat surface move outward from
the center, the surface grows higher according to the power.
At the sametime, asthe numbersrotate around the center, the
sine will pass from positive to negative. Since the numbers
on the surface arethe powersof the numberson theflat plane,
the number of times the sine will change from positive to
negative, depends on how much the power multiplies the
angle (double for square powers, triple for cubics, etc.).
Therefore, each surface will have as many “humps’ as the
equation has dimensions. Consequently, aquadratic equation
will have two “humps’ up and two “humps’ down (Figure
10). A cubic equation will have three “humps’ up and three
“humps’ down. (Figure 11). A fourth-degree equation will
have four “humps” in each direction (Figure 12); and so on.
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Gauss specified the construction of two surfacesfor each
algebraic equation, one based onthevariationsof thesineand
the other based on the variations of the cosine (Figure 13).
Each of these surfaces will define definite curves where the
surfaces intersect the flat plane. The number of curves will
depend on the number of “humps,” which in turn depend on

thehighest power. Since each of these surfaceswill berotated
90° to each other, these curves will intersect each other, and
the number of intersectionswill correspond to the number of
powers (Figure 14). If theflat planeis considered to be zero,
theseintersectionswill correspond to the solutions, or “roots’
of the equation. This proves that an algebraic equation has
asmany roots asits highest power.
Step back and look at this work.

FIGURE 10

FIGURE 11

FIGURE 12

These surfaces were produced, not
from visible squares or cubes, but
from the general principle of squar-
ing, cubing, and higher powers. They
represent, metaphorically, a princi-
ple that manifests itself physically,
but cannot be seen. By projectingthis
principle—the general form of
Plato’ spowers—onto thesecomplex
surfaces, Gauss has brought the in-
visibleinto view, and madeintelligi-
ble what is incomprehensible in the
superficial world of algebraic for-
malism.

The effort to make intelligible
the implications of the complex do-
main was afocusfor Gaussthrough-
out hislife. Writingtohisfriend Han-
sen on Dec. 11, 1825, Gauss said:
“These investigations lead deeply

A Gaussian surface for the
third power.

A Gaussian surface for the
second power.

FIGURE 13
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(a) combines the surfaces based on the variations of the sineand
cosine for the second power. (b) combines the surfaces based on
the variations of the sine and cosine for the third power.
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A Gaussian surface for the
fourth power.

into many others, | would even say,
into the Metaphysics of thetheory of
space, and it is only with great diffi-
culty can| tear myself away fromthe
resultsthat spring fromit, as, for example, the true metaphys-
ics of negative and complex numbers. The true sense of the
sguare root of —1 stands before my mind fully alive, but it
becomes very difficult to put it in words; | am aways only
ableto give avagueimagethat floatsin the air.”
It was here, that Bernhard Riemann began.

FIGURE 14

(a) istheintersection of the surfacesin 13(a) with theflat plane.
(b) isthe intersection of the surfacesin 13(b) with the flat plane.
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