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Pedagogical

Hyperbolic Functions:
A Fugue Across 25 Centuries

by Bruce Director

This pedagogical exercise is part of an ongoing series on
“Riemann for Anti-Dummies.” See for example EIR, April
12, 2002 and May 3, 2002.

When the Delians, circa 370 B.C., suffering the ravages of a
plague, were directed by an oracle to increase the size of
their temple’s altar, Plato admonished them to disregard all
magical interpretations of the oracle’s demand and concen-
trate on solving the problem of doubling the cube. Thisisone
of the earliest accounts of the significance of pedagogical, or
spiritual, exercisesfor economics.

Some crises, such as the one currently facing humanity,
require a degree of concentration on paradoxes that outlasts
one human lifetime. Fortunately, mankind is endowed with
what LaRouche has called, “ super-genes,” which providethe
individua the capacity for higher powers of concentration,
by bringing the efforts of generations past into the present.
Exemplary isthe case of Bernhard Riemann’s 1854 habilita-
tion lecture, On the Hypotheses that Underlie the Founda-
tions of Geometry, in which Riemann speaks of a darkness
that had shrouded human thought from Euclid to Legendre.
After morethan 2,000 thousand years of concentration onthe
matter, Riemann, standing on the shoulders of his teacher,
Carl F. Gauss, lifted that darkness, by developing what he
called, “ageneral concept of multiply-extended magnitude.”

Riemann’s concept extended the breakthroughs already
put forward by Gauss, beginning with his 1799 dissertation
on the fundamental theorem of algebra. Likeits predecessor,
it isadevastating refutation of the “ivory tower” methods of
Euler, Lagrange, et a. that dominate the thinking of most of
the population today, just as it dominated the minds of the
Delians and the other unfortunate Greeks of Plato’s time.
Recognizing that all problemsof society wereultimately sub-
jective, Plato prescribed (in The Republic) that mastery of
pedagogical exercises, (in the domain of music, geometry,
arithmetic, and astronomy) beaprerequisitefor political lead-
ership. Only if leaders developed the capacity to free them-
selves, and then others, from this wrong-headedness, could
crises, likethe onefacing us(or that which faced the Delians),
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be vanquished.

These exercises accustom the mind to shift its attention
from the shadows of sense perception, to the discovery of
knowable, but unseen truths, that are reflected to us as para-
doxesin the domain of the senses. The processis hever-end-
ing. With each new discovery, new paradoxes are brought to
the surface, which provoke still further discoveries, produc-
ing an ever greater concentration of the requisite quality of
mind that produced the discovery in thefirst place.

Doubling of theLine, Square, and Cube

Such is the context for concentrating on the 2,500-year
investigation of the paradoxesinitialy posed by the problem
of doubling the line, square, and cube. These objects appear,
visually, to be similar. The square is made from lines, while
the cube is made from squares. Y et, when subjected to an
action, such as doubling, it becomes evident that while these
objects appear visibly similar, their principle of generationis
vastly different.

The Pythagoreans, who learned from the Egyptians, re-
portedly, were the first Greeks to investigate this paradox.
Recognizing that these visibly similar, but knowably differ-
ent, objectswere all contained in one universe, they sought a
unifying principle that underlay the generation of all three.
That unifying principle could not be directly observed, but
its existence could be known, through its expression, as a
paradox, lurking among the shadows that were seen.

Nearly 80 yearsbefore Plato’ srebuke of the Delians, Hip-
pocratesof Chiosoffered aninsight based onthe Pythagorean
principle of the connection among music, arithmetic, and ge-
ometry. The Pythagoreans had recognized the relationships
whichthey called: thearithmeticand thegeometric. Thearith-
metic mean is found when three numbers are related by a
common difference: b—a=c-b. For example, 3isthe arithme-
tic mean between 1 and 5 (see Figure 1a). The geometric
mean is when three numbers are in constant proportion,
ab::b:c. For example, 2:4::4:8 (see Figure 1b).

Hippocratesrecognized that the arithmeticrelationshipis
expressed by the intervals formed when lines are added, and
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FIGURE 1a

The Arithmetic Mean

a b c

b isthe arithmetic mean between a and c.

FIGURE 1b
The Geometric Mean

Thelength b isthe geometric mean between lengthsa and c. The
area B isthe geometric mean between areas A and C.

that the geometric isexpressed by theintervalswhen squares,
or more generaly, areas, are added. The formation of solid
figures, being of astill higher power, did not correspond di-
rectly to any of these relationships. Neverthel ess, the shadow
cast by the doubling of the cube, expressed arelationship that
corresponded to finding two geometric means between two
extremes (see Figure 1c).

Plato, inthe Timaeus, explainsthesignificance of Hippoc-
rates’ insight:

“Now that which is created is of necessity corporeal, and
also visible and tangible. . . . But it is not possible that two
things alone be joined without a third; for in between there
must needsbe somebond joining thetwo. . . . Now if thebody
of theAll had had tocomeintobeing asaplanesurface, having
no depth, one mean would have sufficed to bind together
bothitself and itsfellow-terms; but now it is otherwise, for it
behooved it to be solid in shape, and what brings solids into
harmony is never one mean, but alwaystwo.”

In the Epinomis, Plato says of the investigations of the
arithmetic and geometric means, “a divine and marvelous
thing it is to those who contemplate it and reflect how the

14 Economics

FIGURE 1c
Two Geometric Means Between Solids

2

There are two geometric means between a cube whose edgeis 1
and volumeis 1 and a cube whose edgeis 2 and volumeis 8.
Proportionally, the therewill be two geometric means between a
cube of volume 1 and a cube of volume 2.

wholeof natureisimpressed with speciesand kind according
to each proportion as power. . .. To the man who pursues
his studies in the proper way, all geometric constructions,
all systems of numbers, all duly constituted melodic progres-
sions, the single ordered scheme of all celestial revolutions,
should disclose themselves, and disclose themselves they
will, if, as | say, a man pursues his studies aright with his
mind’ s eye fixed on their single end. As such a man reflects,
he will receive the revelation of a single bond of natural
interconnection between all these problems. If such matters
are handled in any other spirit, a man, as | am saying, will
need to invoke his luck. We may rest assured that without
these qualificationsthe happy will not make their appearance
in any society; this is the method, this the pabulum, these
the studies demanded; hard or easy, this is the road we
must tread.”

While the initial reported reaction to Hippocrates was
that he had turned one impossible puzzle into another, others
saw hisinsight as a flank. If the construction of two means
between two extremes could be carried out among the shad-
ows, the result could be applied to double the cube. Plato’s
collaborator, Archytas of Tarentum, supplied a solution by
hisfamous construction involving acylinder, torus, and cone
(Figure 4a). This demonstrated that the required construc-
tion could only be carried out, not in the flat domain of the
shadows, but in the higher domain of the curved surfaces.
Archytas’ resultisconsistent with thediscovery of the Pytha-
goreans, Theatetus, and Plato, of the construction of the five
regular solids from the sphere.

Menaechmus' Discovery

Plato’s student, Menaechmus, supplied a further discov-
ery, by demonstrating that curves generated from cones pos-
sessed the power to produce two means between two ex-
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FIGURE 2a
The Proportions of a Parabola

A

The parabola isformed by moving right angle ABC so that vertex
B moves along line OB while C moves along line OC. Thisforms
the changing rectangle OBPC. Point P traces a parabola. By
similar triangles, OA: OB::0B:OC or, OC=0B?2

tremes. As the accompanying diagrams illustrate, the
parabola possesses the characteristic of one mean between
two extremes, whilethehyperbolaembracestwo (seeFigures
2a and 2b). Menaechmus showed that the intersection of an
hyperbola and a parabola produces the result of placing two
means between two extremes (Figure 3).

Embedded in the discoveries of Archytas and Me-
naechmus was a principle that would not fully blossom until
2,200 yearslater, withthe discoveries of Riemann and Gauss.
Archytas’ solution depended on acharacteristic possessed by
the curveformed by theintersection of the cylinder and torus.
This curve could not be drawn on a flat plane, because it
curved intwo directions (Figures 4a and 4b).

Gauss would later define this characteristic as “nega
tive” curvature.

However, Menaechmus' construction using a parabola
and hyperbola, is carried out entirely in the flat domain of the
shadows. Nonetheless, for reasons that would not become
apparent until Gottfried Wilhelm Leibnizinthe 17th Century,
Menaechmus' solutionworked becauseit contained thissame
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FIGURE 2b
The Proportions of an Hyperbola

(B)

(B)

(B)

(B)

(0] A

The hyperbola is formed by the corner B of rectangle OABC. As
the sides of the rectangle change, the area stays constant. This
maintains the proportion 1: OA:: OA: OAXAB.

principle of negative curvature asdid Archytas'.

Because of the lack of extant original writings, it is diffi-
cult to know how consciousthese ancient Greek investigators
were of the principlewhich Gausswould call negative curva-
ture. What isknown, isthat these Greeksknew that the princi-
ple that determined action in the physical universe, was a
higher principle than that which dominated the flat world of
areas. The principles governing solid objects, thus, depended
on curves, generated by a higher type of action in space,
which, when projected onto the lower domain of a plane,
exhibited the capacity of putting two means between two
extremes. These curves combined the arithmetic and the geo-
metric into a One. When this principle was applied in the
higher domain of solid objects, it produced theexperimentally
validatabl e result.

This demonstrates, as Plato makes clear, not ssimply a
principle governing the physical realm, but the multiply-con-
nected relationship between the spiritual and the material di-
mensionsof the universe; hencetheappropriatenessof “ peda-
gogical,” or “spiritual exercises.”

Kepler’s Study of Conic Sections

The next significant step was accomplished by Johannes
Kepler, who established modern physical science asan exten-
sion of these ancient Greek discoveries as those discoveries
were re-discovered by Nicolaus of Cusa, Luca Pacioli, and
Leonardo daVinci. Kepler, citing Cusa, whom he called “di-
vine,” placed particularimportanceon thedifference between
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FIGURE 3
Menaechmus’ Determination of Two Means by

Conic Sections

Parabola

Hyperbola

A

The intersection of an hyperbola and a parabola determine the
magnitudes that double the cube. The parabolaisformed from
OA=1andright angle ABD. The hyperbolaisformed fromthe
OC? rectangle OBCD which has an area of 2. Fromthe parabola,
OA:OB::0B: 0D, or 1:0B::0B: OC2 Fromthe hyperbola,
OBxBC=2. Combining these two yields the proportion,
1:0B::0B:BC::BC:2. In other words, line OB will formthe edge
of a cube whose volumeis 2 and BC will formthe edge of a cube

whose volumeis4.

the curved (geometric) and the straight (arithmetic).

“But after all, why were the distinctions between curved
and straight, and the nobility of a curve, among God' sinten-
tions when he displayed the universe? Why indeed? Unless
because by amost perfect Creator it was absolutely necessary
that amost beautiful work should be produced,” Kepler wrote
in the Mysterium Cosmographicum.

As part of his astronomical research, Kepler mastered
the compilation of Greek discoveries on these higher curves
contained in Apollonius Conics. Asaresult of hisinvestiga-
tion of refraction of light, Kepler reports arevolutionary new
concept of conic sections. For thefirsttime, Kepler considered
the conic sections as one projective manifold:

“[T]here exists among these lines the following order
by reason of their properties: It passes from the straight line
through an infinity of hyperbolasto the parabola, and thence
through an infinity of ellipses to the circle. Thus the para-

bola has on one side two things infinite in nature, the hyper-
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FIGURE 4a
Archytas’ Construction To Double the Cube
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Archytus devel oped a construction to find two geometric means
between two magnitudes. The longer magnitude is AC, which isthe
diameter of a circle. That circleisrotated around A to forma
torus. A cylinder isthen produced perpendicular to thetorus,
whose diameter isalso AC. The shorter magnitude AB isdrawn as
achord of a cross section of thetorus. AB is extended until it

inter sects the cylinder, forming a triangle, which when rotated,
produces a cone. All three surfacesintersect at point P.

FIGURE 4b
Intersection of Cylinder and
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The curve formed by the intersection of a cylinder and a torus has
the characteristic that Gauss called “ negative” curvature.
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FIGURE 5
Kepler's Projective Concept of Conic
Sections

As the focus moves off to the left, the circleistransformed into an
dlipse. At the boundary with theinfinite, the ellipse becomes a
parabola. The hyperbolaisformed on “ other side” of theinfinite.

bola and the straight line, the ellipse and the circle. For it
isaso infinite, but assumes a limitation from the other side.
... Therefore, the opposite limits are the circle and the
straight line: The former is pure curvedness, the latter pure
straightness. The hyperbola, parabola, and the elipse are
placed in between, and participate in the straight and the
curved, the parabola equally, the hyperbola in more of the
straightness, and the ellipse in more of the curvedness.” (See
Figure5.)

Of significance for this discussion is the discontinuity
revealed by this projection between the parabola and the
hyperbola. The hyperbola stands on the other side of the
infinite, so to speak, from the ellipse and the circle, while
the parabola has one side toward the infinite and the other
toward the finite.

From Fermat to Gauss

The significance of this infinite boundary begins to
become clear from the standpoint of Pierre de Fermat’'s
complete re-working of Apollonius' Conics and the subse-
quent development of the calculus by Leibniz and Jean
Bernoulli, with a crucia contribution supplied by Chris-
tian Huyghens.

Huyghens recognized that the curved and the straight
expressed themselves in the hyperbola differently than in
the other conic sections. His insight was based on the same
principle recognized by Menaechmus, that the hyperbola,
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FIGURE 6

Equal Hyperbolic Areas

4

0 1 2 4

The areas between 1 and 2; 2 and 4; and 4 and 8, are all equal.

FIGURE 7
Leibniz’s Construction of the Catenary
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The catenary isformed as the arithmetic mean between two curves
which Leibnizcalled “ logarithmic,” and are today called
exponential. In the figure, thelines are spaced equally along a
horizontal axis. The“ logarithmic” curve isformed by the vertical
lengths which are in geometric proportion. O0=1; €=00? and e=
1/00? d'=00? and d=1/0C?, etc. The catenary is formed by
adding length eto € and dividing the combined length by two;
then adding length d to d' and dividing the combined length by
two, etc. The points of the catenary are equal to (OO™+1/O0")/2.
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FIGURE 8a
Projection of Equal Hyperbolic Areas
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The points along the hyperbola that correspond to equal divisions
of area are projected onto the axis, by drawing perpendicular lines
fromthe axisto those points. This produces lengths, Ob,0Oc,Od.
Oa=1.

FIGURE 8b
Measuring the Lengths Along the Axis
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When the perpendicular lines fromthe axis are extended to
intersect the asymptote, they mark off the lengths (2"+1/2"). By
inversion, the corresponding lengths along the axis are projections
by a 45 degree angle of these lengths. Therefore, the lengths Ob,
Oc, and Od are equal to (2"+1/2")/2.

when projected onto a plane, was formed by a series of
rectangles whose area was always egqual. As one of the sides
of the rectangles got longer, the other side got inversely
smaller. Huyghensfocused his attention on the area bounded
by the hyperbolaand the asymptote, which isthe areaformed
by this ever-changing rectangle whose area is aways the
same (Figure 6). Areas between the hyperbola and the as-
ymptote, formed by rectangleswhose sidesarein proportion,
are equal. Consequently, as the diagram illustrates, those
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FIGURE 8c
The Relationship Between Hyperbola and
Catenary

a (0

(0] (0] 0] (0] (0] O (0]

When lengths from the hyperbola, Oa, Ob, Oc, Od, are set along a
line at equal intervals, their endpoints formthe catenary.

sections of the hyperbola, formed as the distance along the
asymptote from the center increasesgeometrically, areequal.
Thus, as the areas increase arithmetically, the lengths along
the asymptote increase geometrically. Don’t miss the irony
of this inversion: In the hyperbola, the (geometric) areas
grow arithmetically, whilethe (arithmetic) lengthsgrow geo-
metrically!

As has been presented in previous installments of this
series, this combined relationship of the arithmetic with the
geometric was discovered by Leibniz to be expressed by the
physical principle of the catenary. Leibniz demonstrated
that the catenary was formed by a curve, which he called
“logarithmic,” today known asthe “exponential.” Thiscurve
isformed such that the horizontal changeisarithmetic, while
the vertical change is geometric. The catenary, Leibniz dem-
onstrated, isthe arithmetic mean between two such “logarith-
mic” curves (Figure 7).

From here we are led directly into the discovery of
Gauss and Riemann through Leibniz' and Bernoulli’s other
catenary-related discovery: The relationship of the catenary
to the hyperbola.! This relationship is formed from Huygh-
ens discovery. The equal hyperbolic areas define certain
points along the hyperbola, that are “projected” onto the
axis of the hyperbola, by perpendicular lines drawn from
axisto those points. These projections produce lengths along

1. It should be noted that this discovery has been the victim of such awide-
spread pogrominitiated by Euler, Lagrange, and carried into the 20th Century
by Felix Klein et d., that the mere discussion of it with anyone exposed to
an academic mathematics education, is likely to provoke severe outbreaks
of anxiety.
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the axis, that are the same lengths that, as Leibniz showed,
produced the catenary! (See Figures 8a, 8b, and 8c.)

The implications of this discovery become even more
clear when viewed from the standpoint of Gauss' investiga-
tion of curved surfaces that arose out of his earlier work on
the fundamental theorem of algebra, geodesy, astronomy,

FIGURE 9a
Negative Curvature: The Catenoid

FIGURE 9b
Positive Curvature: The Ellipsoid
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and biquadratic residues. To complete this discussion, focus
on Gauss' extension of the investigations of curves, into the
investigation of the surfaces which contain them. Surfaces
that contained curves with the characteristics of the hyper-
bola or catenary, Gauss called “negatively” curved, while
surfaces that were formed by curves with the characteristics
of circles and ellipses, he called “positively” curved.? (See
Figures 9a and 9b.)

Now think back over this2,500-year fugue. The principle
underlying the constructions of Archytas and Menaechmus,
the discontinuity expressed by the infinite boundary between
the hyperbola and parabola; the inversion of the geometric
and arithmetic in the hyperbola: From Gauss' perspective,
these all reflect atransformation between negative and posi-
tive curvature.

Thus, to investigate action in the physical universg, it is
necessary to extend the inquiry from simple extension to
curvature and from simple curvesto the surfacesthat contain
them. This, as will be developed in future installments, can
only be done from the standpoint of Gauss and Riemann’s
complex domain.

2. Thereason for the names*“ negative’ and “positive” will be discussed in a
future installment.

Kepler’s
Revolutionary
Discoveries

The most crippling error in
mathematics, economics,
and physical science today,
is the hysterical refusal to
acknowledge the work of
Johannes Kepler, Pierre
Fermat, and Gottfried
Leibniz—not Newton!—in
developing the calculus.
This video, accessible to
the layman, uses animated
graphics to teach Kepler’s
principles of planetary
motion, without resorting to
mathematical formalism.
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