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mathematical fish of reality swim. Competent mathematics,
which is based on constructive geometry, not arithmetic,
would never defend the blunder of seeking to define those fish
explicitly, but only the mathematical container which the
activity of those fish expresses. It is the crucial physical exper-
iment itself, or the equivalent in Classical artistic composition,
which addresses the physical reality itself. This point is
demonstrated most forcefully in any competent approach to
the study of social processes in general, especially with respect

to the economies they represent. Nothing points out that set of
relations more simply and clearly than the discovery which
occupies this present chapter, Archytas’ solution for the geo-
metrical construction of the doubling of the cube.

Such was the genius expressed by the Pythagoreans and
Plato, by Eratosthenes, Nicholas of Cusa, Kepler, Fermat,
Leibniz, Kästner, Gauss, and Riemann, among others of kin-
dred disposition.

This method of constructive geometry, which Europe has

Construct!

The difference between a real economy: and the fantasy of a financial analyst:

is construction. Construction tests the via-
bility of those ideas the mind thinks best
conceived: Are they really of legitimate
parentage, or did an adulterer slip in when
your guard was down, and adulterate the
whole affair?

You may think: “Ah, I know this! This
is simple. . . .” But when you try to pull
your idea from your mind into the visible
world . . . well, it was not nearly so sim-
ple as you thought! The mind rushes,
unencumbered by the material world,
capable of conceiving of perfectly consis-
tent systems, glorious designs, elaborate .
. . machinations . . . which have little rela-
tion to reality. The body, meanwhile,
weighed by its own flesh, mucks in the
mud, capable of pursuing little but the
sensual pleasure of a pig. Where is their
connection?

Construction is the mean between
mind and body; it is the means of mak-
ing music through a harmony of these
two diametrically opposed elements. It
is the only means of investigating reali-
ty. If you take up the challenge laid out
here by Lyndon LaRouche, if you get
your hands dirty in pursuit of its solu-
tion, you were likely to produce an idea
directly related to the idea which deter-
mines what I am now writing, as I
attempt to convey the fruits of our strug-
gle with LaRouche’s challenge. You
were likely to laugh, as we did—and as
I suspect LaRouche did—when he
wrote out the problem as he did. In just
a few words, he presents an inquiry
which takes many hours, and really,
many people, to adequately investigate.
And if that were not enough, there is an
element of the seemingly impossible
which we were immediately aware was
embedded there.

First, LaRouche asks us to think of

BOX 2

Constructing Volumes

Members of the Seattle LYM
work on the problem of

constructing various volumes.

Here LYM members contemplate the
magnificent construction of the Grand
Coulee Dam.

Here, we see human activity wasted on the
“virtual economy,” known as the stock
exchange.
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derived from the Pythagoreans’ practice of the method known
as Sphaerics, is crucial in the modern discovery of a universal
physical principle, as this is illustrated by Johannes Kepler’s
uniquely original discovery of universal gravitation. The
notion of the way in which a discovered universal physical
principle has a specific type of object-like effect, can not be
made fully clear until the student has mastered Bernhard
Riemann’s insight into what he identifies as “Dirichlet’s
Principle,” in its application within the domain of Riemannian

hypergeometries. Pending the experience of discovering that
principle, it is useful to cultivate the joyfully impassioned
desire to reach the point of intellectual self-development, at
which one could experience that discovery in one’s own mind.

Now, those words of caution stated, construct a solution
which correlates these discoveries of principles in the form
they appear in the various containers. For each case, adduce
the single principle of action, a physical principle, which
underlies the constructed demonstration. (See Box 2.)

the volume of water a cube could contain
“as compared with the relevant sphere or
torus of the same capacity.” If he means
what he says, he asks us for a “cubature
of the sphere”: He asks us to produce a
cubical volume equal to the volume of
the sphere. This is certainly no less a
problem than the quadrature of the cir-
cle, and actually, a good deal more of a
problem.

The quadrature of the circle is the
process of making ever-closer approx-
imations of the length of the perimeter
of the circle by drawing circumscrib-
ing and inscribing polygons of an
ever-increasing number of sides, as
Archimedes did. The process is intended
to result in the creation of a square
whose area is exactly equal in length to
the area of the circle. Archimedes
applied to the circle a method associated
with Eudoxos, a friend of Plato, called
“exhaustion.” The method of exhaustion
had worked well to produce precise
results for other problems, like the quad-
rature of the parabola, and it was likely
used with similar effect on some of the
volumetric problems we encounter
below.

But Nicholas of Cusa showed that a
true quadrature of the circle is ultimately
impossible because of the “species differ-
ence” between the curved line of the cir-
cle and the straight lines of the polygons,
as discussed in Box 1. The cubature of
the sphere is certainly related to this
problem, but while the number of poly-
gons that can be inscribed in a circle is
infinite, there is a limited number of
solids that can be inscribed in the sphere
(Figure 1).

LaRouche then calls for a cylinder
and cone “each able either to contain
that amount of water, or to double that
amount in the cylinder.” This requires
determining the relations among cube,

sphere, torus, cylinder, and cone
(Figure 2). Perhaps you, like some of
us, were trained in school and can spout
out the formulae for the volume of the
sphere, cylinder, and cone as a
Pavlovian response. Perhaps, you were
not able to contain yourself, even as the
problem was first posed. If this is so,
you must find an incredulous person, or
better yet, muster incredulity yourself,
and consider this paradox: We are told
that the volume of the cone is less than
one half the volume of the cylinder
(Figure 3). (The fun is figuring out how
much less.)

But, as the incredulous person will

FIGURE 1

These Platonic Solids, drawn by Leonardo da Vinci, are the only regular solids possible to
construct within a sphere. They point to one crucial difference between surfaces and
volumes. (Try bisecting the sides of the octahedron, to make a solid with 16 faces, the way
you would bisect the sides of the octagon to make a polygon with 16 sides, to fully
understand what I mean.) Also note that because of its “regularity,” its equal-sidedness,
the cube is “spherical.” (We will see more on this in a moment.)

FIGURE 2

The side of the cube is equal to the radius
and height of both the cone and cylinder,
and to the radius of the sphere. (We
apologize for the glaring absence of the
torus.)

FIGURE 3

A cylinder (a) and the
cone that fits into it (b).
The cone has the same
base and height as the
cylinder.

(a) (b)

Box 2 continues on next page
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Discuss this with a class of between fifteen and twenty-five
adult youth of between eighteen and twenty-five years of age.
Give them the listed “ingredients” specified above. Have

them, rather than a teacher, generate the proposed construction
and its implications. (See Box 3.)

As the great representative of the school of the Athens

point out, the cylinder can be produced
as a volume of rotation, the effect of
rotating a rectangle about an axis that
coincides with its edge. If you cut that
rectangle in half along its diagonal, you
will have a right triangle which is half
the area of the original rectangle
(Figure 4).

Given this fact, “reason” leads to the
conclusion that the volume of the cone
will be exactly half that of the cylinder.
Of course the reason used here, is none
other than the “lazy reason” that Socrates
spurns in the Phaedo, or the sloppiness
Eratosthenes ridicules in the playwright
who has a character proclaim that the
tomb of a king is too small, and therefore
the tomb should be doubled, by doubling
the length of each side. Clearly,
Eratosthenes tells us, this is a terrible
blunder, for the volume would now be
eight times greater, which the playwright
could have known, if he only took the
time to think about it.

Now consider the cone: Think of it
as a series of cylinders added up
together; this is akin to Eudoxus’
method of exhaustion mentioned above
(Figure 5). The radii of the series of
diminishing cylinders changes in arith-
metic proportion relative to the number
of cylinders chosen, but the areas of
their bases, and hence their volumes,

would change as the square of that
radius (Figure 6). The cone’s volume
changes in a non-arithmetic way, mak-

FIGURE 4

If you rotate the rectangle (a) around its left edge, you will produce the cylinder (b). If you
rotate the right triangle formed by cutting the rectangle in (a) along its diagonal around
the same edge, you will produce a cone that has the same base and height as the cylinder,
as seen in (b).

(a) (b)

FIGURE 6

The three radii in (a) correspond to the three areas shown in (b).

(a) (b)

FIGURE 7

A graphical representation of the essential difference between the volume of a cone and
cylinder. The vertical lines in (a) represent the various radii. The vertical lines in (b) are
equal to the corresponding squares of those radii.

(a) (b)

FIGURE 5

The height of each cylindrical layer is 1/3
the original height of the cone. The base
of each cylindrical layer has a radius
equal to the base of triangle produced by
that cut. The first, smallest base has a
radius 1/3 the radius of the cone; the next
base has a radius 2/3 the radius of the
cone; and the final base has a radius
equal to that of the cone.
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Platonic Academy, Eratosthenes, emphasized, the impor-
tance of Archytas’ solution for this, the so-called Delian par-
adox, was crucial in the development of both mathematics

and physics from the time of Pythagoreans such as Plato’s
friend and collaborator Archytas, into modern times. This
also represents the method resurrected for the founding of

ing the relationship between the volume
of rotation of the triangle and rectangle,
between the cone and cylinder, different
than the relationship between the areas
of the triangle and rectangle (Figure 7).
This is another difference between the
surfaces and solids, with which we
must grapple.

The relationship between the cylinder
and sphere can be adduced in a similar
way. First build a cylinder with a radius
equal to that of the sphere, and a height
equal to that of the sphere’s diameter
(Figure 8). Then weigh them (note that
this works only if they were made of the
same material), and compare their
weights. Ask, why is this true? Why did
we get this result? This provides addition-
al insight into the problem.

But then you are reminded, as if
remembering something nearly forgot-
ten, we must now construct a sphere,
torus, cone, cylinder, and cube with the

same volume! Although related to the
preceding exploration, this adds a new
element to worry us (Figures 9 and
10).

Now we come to the question of
doubling these volumes, and the geo-
metric effect in this doubling. There are
three ways in which the volume of a
rectangular solid can be doubled
(Figure 11). This is also true of the

cylinder and cone (Figure 12). In the
images shown in Figure 13, only one of
the three doubled volumes is similar to
the first.

In like manner, the sphere can only be
doubled in one way, because a sphere
must always be similar to any other
sphere. (Ponder the implications of this
for a moment.) The cube must be similar

FIGURE 8

Here we have a cylinder, the base of
which has a radius equal to the radius of
the sphere, and the height of which is
equal to the diameter of the sphere.

FIGURE 9

These solids all have the same
volume, as determined from
the volume of the sphere.
(Again, forgive the absence
of the torus.) Ask yourself,
how did we determine
these volumes? Each posed
a particular problem of
finding a cube root. Finding
the volume of the cube was
nearly impossible!

FIGURE 10

The four solids on the left are of equal volume. The original solids are on the right. In the
original set of solids, the cylinder and cone both have a radius and height equal to the
radius of the sphere, and the side of the cube is equal to the radius of the sphere. Notice
the dramatic difference in the size of the two cubes and the two cones. The two spheres are
the same size.

FIGURE 11

Our original cube, whose side is equal to the radius of our sphere, is at the
far right. Next to it is a rectangular solid whose width is double that of the
cube, while its height and depth are the same as the cube. The third solid to
the left has a face that is double the face of the original cube, but its depth is
the same as the cube. Both of these solids are double the volume of the
original cube, and their construction did not require that we find a cube
root. But the fourth solid on the left is the doubled cube. Its construction
required a profound addition to our array of capabilities.

Box 2 continues on next page
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modern experimental physical science by the Fifteenth
Century’s Cardinal Nicholas of Cusa’s De Docta
Ignorantia. This present chapter of our report is devoted to
making clear those historical implications of the debate over
cubic functions.

For related reasons, the implications of the doubling of the
cube by the method of Archytas, became the most crucial of
the formal political issues fought out within modern European
mathematics and related physics matters, from the Sixteenth

Century to the present day.
This same challenge, of the doubling of the cube by no

means other than construction, cropped up in the attempt to
define an algebraic solution for the doubling of the cube,
and deriving cubic roots, by Cardano and others, during the
the Sixteenth Century, which prompted great consternation
among empiricists such as D’Alembert, de Moivre, Euler,
Lagrange, and other professed followers of Descartes or
Isaac Newton, during the Eighteenth Century. Cardano and

FIGURE 12

In both (a) and (b), the original volume is on the far right, and the perfectly doubled similar volume is on the far left.
In (a), each of the three cones next to the original cone is double the volume of the original. The first to the left is doubled by doubling
the height, the second by doubling the area of the base. The cone on the far left was doubled by an equal increase to both the radius of
its base and its height, producing a similar cone. In (b), we show the same results for the cylinder. The base of the cylinder third from
the right (shown on edge) is doubled.

(a) (b)

FIGURE 13

Here we show each original solid with its similar companion of double capacity. Because of the difficulty posed by constructing
hollow containers, we realized that if our solids were constructed properly, we could make use of a discovery of Archimedes to
determine their volumes.

FIGURE 14

In (a), we show the various conic sections progressing from the horizontal cut, which gives the circle on the far right; to a cut less than
parallel with the side of the cone, which results in an ellipse; to the cut parallel with the side, which gives the parabola; to a cut
between the angle of the side and vertical, which gives the hyperbola. The final cut shown is that made down the axis of rotation,
which reveals the triangle rotated to produce the cone. In (b), we show a schematic produced by Bruce Director to demonstrate
Kepler’s conception of the conic functions. As the focus moves off to the left, the circle is transformed into an ellipse. At the boundary
with the infinite, the ellipse becomes a parabola. The hyperbola is formed on the “other side” of the infinite.

(a) (b)



his associates had been confronted with what D’Alembert’s
advisor de Moivre identified falsely as “imaginary” num-
bers, which turned up as formal mathematical solutions for
the errors arising in the attempt to define cubic roots only
algebraically.

The empiricists, the Seventeenth and Eighteenth centuries’
followers of the medieval William of Ockham called either
Cartesians or Newtonians, reacted to this experience by insist-
ing on locating the physical reality expressed within the

bounds of their axiomatic system of mathematics, and there-
fore libelled, as “imaginary,” the physical action which actual-
ly produced observed effects such as the calculated cubic
roots.

This is the challenge which led to the 1799 publication
of Carl F. Gauss’s doctoral dissertation, in which he devel-
oped a physical conception of geometry which he later
renamed The Fundamental Theorem of Algebra. In their
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to any other cube, so in this way, it is a
spherical solid. Look back at the prob-
lem of constructing volumes of equal
capacity.

There are ways of cheating in con-
structing a cone or cylinder whose vol-
ume is equal to that of a sphere. If you
are unconcerned that the solids you pro-
duce are similar to your original
objects, the problem is as easy as
changing the height, or the surface area
of the base, of the original. But then you
miss the fun of confronting the con-
struction of a series of different cube
roots. Even if you try to avoid this dif-
ficulty, you can not escape the problem
of finding a cube root (and a very
strange cube root at that), when con-
structing a cube with equal capacity to
the sphere.

In this experiment with volumes,
which is at heart a study of cubes, the

problem of the curved and the straight
lurks around every corner (and around
every edge). When Kepler spoke, in his
Optics, about the relationship among the
conic functions, looking at the different
conic sections as a continuous transfor-
mation from the perfectly curved, the cir-
cle, to the perfectly straight, the straight
line, he was, in truth, depicting the aspects
of curved and straight married in the cone
itself (Figure 14).

In this regard, the cone and cylinder
obviously share this important character-
istic, this union of curved and straight, as
seen in their sections (Figure 15).

But the cube, which does not appear to
have any part of curvature within it, is
itself spherical! (Figure 16) 

To conclude, consider the torus, so
neglected in this initial treatment. Where
does it belong? And, how do you con-
struct those cube roots, anyway?

FIGURE 15

Here we show that there are only three
different cuts of the cylinder, no matter
how you cut it! (The axial cut that
produces a rectangle is not shown.) Notice
that the cylinder and cone share the
circular and elliptical cuts (although in the
cylinder all its elliptical cuts are of a
special type), but that the parabola and
hyperbola are unique to the cone.

FIGURE 16

—The entire Seattle LaRouche Youth Movement was involved in this project. In addition
to Niko Paulson, Peter Martinson, and Riana St. Classis, Dana Carsrud, and Will
Mederski consistently aided the project’s progression to this stage of completion. They
helped construct the means of constructing the solids, and helped construct the solids,
paint them, epoxy them, and photograph them. And now, we shall all play with them!
Photographs were taken by Lora Gerlach, Will Mederski, Dana Carsrud, and Riana St.
Classis. Lora Gerlach also provided priceless assistance with navigating the digital flat
lands of Photoshop and Word.
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