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er in 1676, a branch of science which, together with the mas-
tery of the implications of elliptical functions, had previously
been assigned to future mathematicians by Kepler. The roots
of Kepler’s prescription had been the implications of the
method which he had proven conclusively by the characteris-

tic, internal features of his own absolute originality in his dis-
covery of universal gravitation. (See Box 10.)

The general, relatively widespread knowledge of Kepler’s
discovery of universal gravitation among readers in England,
had been made available prior to the misleading bowdleriza-

“Anyone who shows me my error
and points the way will be for me the
great Apollonius.”

—Johannes Kepler, 
Astronomia Nova

Kepler’s anti-Euclidean approach to
astrophysics dealt not with the motions
of the heavenly bodies, but with the
power that caused their motion. Shapes,
figures, forms, and curves—none of
these were adequate to express a princi-
ple that caused motion. Kepler dispenses
with the empiricist approach of Ptolemy,
Copernicus, and Brahe in
the first section of his
Astronomia Nova, demon-
strating that while their
three systems appear to dif-
fer, they are all geometrical-
ly equivalent, and therefore,
all wrong. For how can fig-
ure cause itself?

Kepler’s adoption of
metaphor, in his revival of
the Greek approach of
Sphaerics, called for some-
thing that is not a shape,
curve, figure, or any other
geometric object expressed
in sense-perceptual terms:
gravitation. In developing
his hypothesis of universal
gravitation and his working-
through of the operation of
this idea (“species”), he
lawfully pushed the inade-
quate geometric language
of his time past its limits to
the point of collapse:

Kepler hypothesized
that planets move in

ellipses at a speed inversely proportional
to their distance from the Sun due to the
weakened power of gravitation at greater
distances (Figure 1).

A problem arises in implementing
this idea: Since a planet’s direction
changes at every moment, how small
must these triangles be, and how many
are needed to be a perfectly accurate
measure of time? If the triangle has any
size at all, does it not presuppose linear
action in the small, and eliminate con-
stant change? Kepler transforms the idea
of an infinite number of triangles of

motion, each seemingly so small as to be
“nothing,” into a continuous area swept
out between the planet and the Sun,
which idea Kepler uses as a measure of
time (Figure 2).

Here, planet P has moved a distance
of arc A from point O, sweeping out an
area SPO, which area is a measure for
the time of the motion. This area consists
of both a circular sector CPO and a tri-
angle SCP. While the area of circular
section CPO is measured by the length
of arc A, the area of triangle SCP is
measured by h, the sine of arc A.

As Cusa had demonstrated over a
century earlier, these two magnitudes, A
and h, are incommensurable. Given a
position P, it is possible to measure and
determine the enclosed area, but, given a

BOX 10

Kepler’s Approach

FIGURE 1

FIGURE 2

The distance a planet moves in a period of time is inversely proportional to its distance from the Sun.
The same given interval of time results in triangles of equal area. For example, at a distance (radius)
twice as far from the Sun, the motion per time interval (arrowed change) is only half as far. This makes
a triangle of double length but only half the height, which is therefore the same area. This area is a
measure for time.

Box 10 continues on next page
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tion of Kepler’s work by, ostensibly, Isaac Newton. To the
extent of the relevant biographical evidence available, to the
end of his life, Newton had no relevant knowledge of what a
calculus is to the end of his life.

To situate the subject of the implied attacks, by D’Alembert,
Euler, Lagrange, et al., against the physical relevance of
Archytas’solution not only for the Delian paradox, but that para-
dox’s relevance for all competent modern science and statecraft,

desired area, is it possible to exactly
determine P? Kepler found this task of
determining the exact position of a planet
at a future time to be impossible:

“And while the former [circular sec-
tor] is numbered by the arc of the eccen-
tric, the latter [triangle] is numbered by
the sine of that arc. . . . And the ratios
between the arcs and their sines are infi-
nite in number. So, when we begin with
the sum of the two [the sought area as a
measure for time], we cannot say how
great the arc is, and how great its sine,
corresponding to this sum. . . . I exhort the
geometers to solve me this problem:
‘Given the area of a part of a semicircle
and a point on the diameter, to find the arc
and the angle at that point, the sides of
which angle and which arc, enclose the
given area.’. . . It is enough for me to
believe that I could not solve this a priori,
owing to the heterogeneity of the arc to
the sine. Anyone who shows me my error
and points the way will be for me the
great Apollonius.”

The “error” lies not with Kepler, but
with the underdeveloped language he was

using. He had developed a physical prin-
ciple that lay between the “cracks” of
geometry, but his mathematical language
was one of figures, not principles. The
cracks between his triangles were mathe-
matical anomalies, but reflected an ever-
present physical cause. It remained for
Leibniz to introduce metaphor (dynam-
ics) to create a physical mathematics ade-
quate to address physical, rather than
merely mathematical questions.

Kepler’s challenge to the future
prompted Leibniz’s mastering of “noth-
ings,” such as the cracks between
Kepler’s area triangles, in his uniquely
original discovery of a truly infinitesimal
calculus (Figure 3).

Leibniz’s calculus was not enough.
The double incommensurability of the
ellipse defied Leibniz’s attempts at
expression by circular functions. A fuller
understanding of the higher classes of
elliptical and hyper-elliptical transcen-
dental functions would have to await the
work of Gauss, Abel, and Riemann, over
two centuries after Kepler.

—Jason Ross

FIGURE 3

Circular and elliptical quadrants. The length of arc along a circle is directly measured by
the angle of rotation from the center, while the lengths of the sines (vertical lines) change
unmeasurably. On the ellipse, the incommensurability of the sine continues to exist, as
well as another: The length of arc is no longer measurable by the angle of (circular)
rotation at the center. (Is it fair to even consider rotation on an ellipse from the standpoint
of constant circular rotation?) Can a magnitude be doubly incommensurable? If so, what
is creating it, for how could an already understood principle create something
incomprehensible?


