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tinction we have already noted, in the preceding chapter,
among rational, irrational, and transcendental number-series. It
should be readily seen that Gauss’s conception of algebra is
not ontologically arithmetic, but a geometrical approach con-
sistent with the principles of Sphaerics. (See Box 14.)

Therefore, define the set of cubic roots with which the
Eighteenth-Century reductionist Leibniz-haters were wrestling
in terms of the proof of the ontological implications, respect-
ing cubic roots, for the related case of the geometrical con-
struction of the doubling of the cube. Aha! There is now clear-

He then begins his proof proper:
“The outstanding theorem is frequent-

ly proved with the help of imaginary
numbers, cf. Euler Introd. In Anal. Inf. T.I.
p 110; I consider it worth the trouble to
show how it can easily be elicited without
their help. It is quite manifest that for the
proof of our theorem nothing more is
required than to show: When any function
X of the form xm+ Ax (m�1)+ Bx (m�2)+
etc. + Lx + M is given, then r and � can
be determined in such a way that the
equations (1) and (2) hold.”

Not only does he claim that he will not
use imaginary numbers, but he seems not
even to use algebra! These equations (1)
and (2) do not involve x in any way, but
only r and �.

To understand Gauss’s use of these
two equations (1) and (2), let’s re-
approach our earlier paradox, introduced
in Box 13 (Figure 1):

We have lines, squares with one mean,
and cubes with two means. What form
could correspond to a greater number of
means, or an indeterminate number of

BOX 14

Gauss’s Geometrical
Approach to Algebra

(1) r m cosm� + Ar (m�1) cos(m�1)� + Br (m�2) cos(m�2)�
+ . . . + Krr cos2� + Lr cos� + M = 0,

(2) r m sinm� + Ar (m�1) sin(m�1)� + Br (m�2) sin(m�2)�
+ . . . + Krr sin2� + Lr sin� + M = 0,

As Gauss devastatingly exposes in his
1799 doctoral dissertation, the approach
to algebra as being ontologically arith-
metic fails to explain itself: Algebra
fails, internally, to prove what became
known as the fundamental theorem of
algebra.1

To clarify, consider Gauss’s descrip-
tion of d’Alembert:

“It is proper to observe, that
d’Alembert applied geometric considera-
tions in the exposition of his proof and
looked upon X as the abscissa, and x as
the ordinate of a curve (according to the
custom of all mathematicians of the first
part of this century to whom the notion of
functions was less familiar). But all his
reasoning, if one considers only what is

essential, rests not on geometric but on
purely analytic principles, and an imagi-
nary curve and imaginary ordinates are
rather hard concepts and may offend a
reader of our time. Therefore I have rather
given here a purely analytic form of rep-
resentation. This footnote I have added
so that someone who compares
d’Alembert’s proof with this concise
exposition may not mistrust that anything
essential has been altered.”

Compare this with Gauss’s presenta-
tion of the ontologically geometric com-
plex domain.

Gauss begins the portion of his disser-
tation concerning his own demonstration
with two introductory lemmas, where he
introduces two equations:

means? What Jakob Bernoulli reported as
his spira mirabilis (miraculous spiral)
provides us a lead (Figure 2).

Such a spiral combines two forms of
action, known as arithmetic (simple,
repeated addition) and geometric (simple,
repeated multiplication). The amount of
arithmetic angular change and geometric
increase of distance are combined as one
action: Thus, doubling the rotation
squares the multiplied length, tripling
cubes it, and quadrupling gives us a geo-
metric understanding of x4, x5, x6, and so
on, as high as you like.

The unbridgeable gap between linear,
square, and cubic action, and the mystery
of higher forms of action, have been
solved by introducing a single curve,
which, by multiplying the amount of rota-
tion, can create all of these relationships.
Thus the equiangular spiral brings what
seemed infinite, to the finite, and encom-
passes a before-then disparate class under
one idea of action, which action Leibniz
called logarithmic.

Now, there are many spirals that could
be drawn, spirals which grow more or less
quickly. Let us interest ourselves in the
extremes: a straight line (pure extension,
without rotation) and a circle (pure rota-
tion, without extension) (Figure 3):

Inspect the circle (Figure 4): What
form of number does it require? Call one
location 1, and, naturally, its opposite
�1:

Note that our earlier spiral relationship
still holds: The 180° rotation to get to �1,
when doubled to 360°, puts us at 1, which
is (�1)2. But what of the other locations
on the circle? To what numbers do they
correspond? They cannot all be 1, for they
are different places (Figure 5).

Maintaining our principle, (?)2 would
be �1 by the logarithmic property dou-
bling rotation on our spiral. This makes
(?) = √�1, and its opposite, �√�1
(Figure 6).

The “imaginary” numbers, although
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ly something “in between” the algebraic elements of such a
generalized cubic function, something which corresponds,
ontologically, to the implications of Archytas’ construction. If
we generalize all of the algebraic forms of the set of cubic
roots to include the “factor” of the so-called “imaginary”

aspect, we have a composite picture of visible forms which are
connected functionally by a form of action which is not visi-
ble, but we can nonetheless represent and treat as a geometri-
cal action of a special kind. It exists! (See Box 15.)

To see more clearly what is going on in the mind of the rel-

not existing on the number line, do exist,
lying outside the blinders of formalists.
Extending these actions, we create the
complex domain.

“Suppose, however, the objects are of
such a nature that they cannot be ordered
in a single series, even if unboundedly in
both directions, but can be ordered only in
a series of series or, in other words, form
a manifold of two dimensions; if the rela-
tion of one series to another or the transi-
tion from one series to another occurs in a
similar manner, as we earlier described
for the transition from a member of one
series to another member of the same
series, then in order to measure the transi-
tion from one member of the system to
another, we shall require in addition to the
already introduced units +1 and �1 two
additional, opposite units +i and �i.
Clearly we must also postulate that the
unit i [√�1 –ed.] always signifies the
transition from a given member to a
determined member of the immediately
adjacent series. In this manner the system
will be doubly ordered into a series of
series.”3

Now, how can we represent change in
this complex domain? With “normal”
numbers, squaring can be represented
thus (Figure 7):

Each of these right angles combined
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FIGURE 2

Bernoulli’s logarithmic, self-similar
spiral.2 The 90° rotation of going from 1
to 2, repeated four times to 360°, gives a
length of 16, which is 24.
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FIGURE 7

Image courtesy of Mike Vander Nat

Lines drawn from A to the horizontal axis
make right-angle turns to intersect the
vertical axis. The combination of the
points on the two axes forms a parabola.Box 14 continues on next page
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evant Eighteenth-Century Berlin gaggle using their reading of
the cubic-roots case for an attempt to discredit Leibniz, look at
a related production by Euler, which I had referenced more
than a decade ago.

At this point, we are preparing to focus on the matter of the
development of the concepts of the Biosphere and Noösphere
by Russia’s V.I. Vernadsky. Vernadsky’s work revives, thus,
but in a new approach, that traditional epistemological distinc-

with the axis can be thought of as making
two similar triangles, making the ratio
A/X = X/Y (Figure 8). We then get AY/X
= XY/Y, and AY/X = X, which gives AY =
X2. So, when A = 1, Y = X2 (Figure 9).

Each horizontal motion is “wedded” to
a vertical change of squared relationship to
the horizontal. Their union, the parabola,
expresses the process of squaring.

But what if we take the entire complex
field? This is a two-dimensional space,
and each result of squaring is two-dimen-
sional as well. Together, that makes four
dimensions! No wonder d’Alembert,
“rests not on geometric but on purely ana-
lytic principles ”

Gauss resolved this with the logarith-
mic spiral. If each rotational doubling
squares length, we could express any loca-
tion (a + b√�1) as r (cos� + √�1 sin�)
(Figure 10).

And, squaring it spirally, we get
r 2 (cos2� + √�1 sin2�).

Do you recognize anything from
Gauss’s 1799 paper? Gauss simply
applies this transformation to his entire
algebraic equation X = xm + Ax (m�1) +
Bx (m�2) + etc. + Lx + M = 0, creating for
each x, r(cos� + √�1 sin�) instead, and
producing:

FIGURE 8
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FIGURE 9
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Combining a number of these triangles creates the parabola 

This keeps separate the parts with and
without √� 1, geometrically constructing
two surfaces, where d’Alembert only
falsely ruminated on one, non-existent
curve (Figure 11).

From these beginnings, Gauss is able,
in his 1799 paper, to simply and elegantly

use the ontologically transcendental geo-
metric nature of number to demonstrate a
characteristic (the fundamental theorem)
of its shadow, algebra. How foolish are
those who seek to explain the universe by
imagining that its shadows are reality!

—Jason Ross

(1) r m cosm� + Ar (m�1) cos(m�1)� + Br (m�2) cos(m�2)�
+ . . . + Krr cos2� + Lr cos� + M = 0,

and

(2) r m sinm� + Ar (m�1) sin(m�1)� + Br (m�2) sin(m�2)�
+ . . . + Krr sin2� + Lr sin� + M = 0.

__________

Notes
1. How much time, effort, and money is

annually wasted by students attempting to
explain “financial economics” from monetary
theory? Perhaps they could put their time to good
use by providing a thorough accounting of such
waste, per annum.

2. Bruce Director, “Gauss’s Declaration of
Independence” and “Bringing the Invisible to the
Surface,” Fidelio, Fall 2002.

3. Carl Gauss, “The Metaphysics of
Complex Numbers,” translated from Gauss’s
Werke, Vol. 2, pp. 171-178, by Jonathan
Tennenbaum in 21st Century Science &
Technology, Spring 1990.

See http://www.wlym.com and
http://www.wlym.com/~jross/gauss/ for Gauss’s
referenced paper and work by the LYM on
Gauss’s 1799 paper.


