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An Insider’'s Guide to the Universe

by Bruce Director

Though all human beings are blessed to spend eternity inside
the universe, many squander the mortal portion, deluded that
they are somewhere else. These assumed “outsiders” acquire
an obsessive belief in a fantasy world whose nature is deter-
mined by a priori axiomatic assumptions of the deluded’s
choosing, and an insistence that any experimental evidence
contradicting these axioms must be either disregarded, or, if
grudgingly acknowledged, determined to be from ‘“outside”
their world. Typical of such beliefs are the notions of
Euclidean geometry, empiricism, positivism, existentialism, or
that most pernicious of pathologies afflicting our culture
today: Baby-Boomerism.

Since it is inevitable that those afflicted with this mental
disease will experience occasions (at least one is guaranteed,
though many are likely), in which they will confront the falla-
cy of their beliefs, dissecting their delusions primarily pro-
vides clinical evidence relevant to psychopathologists. While
the study of such pathologies is essential to the identification
of disease, the treatment and prevention demand a positive
conception of health. Thus the continued development of the
human condition requires the happy investigation of the real
world that human beings have been designed to inhabit. As the
history of mankind’s increasing dominance in and over the
universe demonstrates, it is the natural proclivity of man to do
that. Fortunately, as Plato, Cusa, Leibniz, and Kepler all
emphasized, the universe has been created to this end, for cog-
nition is a pervasive and efficient principle in the universe.
Further, the entire universe is at work in every infinitesimal
part, accessible to being grasped, and acted upon, by the
human mind.

The most advanced approach to such an investigation of the
universe “from the inside,” was laid down by Bernhard
Riemann in his famous 1854 habilitation dissertation. As rev-
olutionary as it was ancient, Riemann insisted on a return to
ante-Euclidean sanity, demanding that science abandon the
acceptance of axiomatic systems, and proceed solely on the
basis of hypotheses generated from the investigation of physi-
cal principles. The problem Riemann faced was that, for more
than two thousand years, scientists had become indoctrinated
into accepting pseudo-systems (such as Euclidean geometry),
as the prerequisite scaffold on which science must be built,
either as the accepted, but assumed false, form of expressing a
true discovery, or, as in the case of Aristoteleanism, the actual
form of human knowledge. Riemann recognized, as did his
sponsor in this project, C.F. Gauss, and Gauss’s sponsor, A.G.
Kastner, that whether as a means of expression, or as an actu-
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ally held false belief, Aristotelean and Euclidean-type dogmas
were obstructions that imprisoned the mind inside a false
world, rendering it only capable of peering, impotently, into
what the victim believed to be an outer, real world.

Consequently, for science to make progress, this distinction
must be broken. There is no outside. There is one, self-bound-
ed universe, whose progressive development is characterized
by an anti-entropic tendency towards higher states of organi-
zation and existence, which is knowable from the inside
through the cognitive powers embodied in the human mind.
The appropriate form of expression of this physical reality, is,
Sfor modern science, based on the conception of a Riemannian
tensor.!

On the occasion of his habilitation dissertation, Riemann
elaborated the method by which this insider’s science must
proceed. In so doing, he gave voice to the actual form of dis-
covery that underlay every advance in science, from the
ancient discoveries associated with the Egyptian-Pythagorean
science of Sphaerics, through Gauss’s then-recent accom-
plishments in astronomy, geodesy, geomagnetism, electrody-
namics, and epistemology. But he went further, generalizing
this method to a degree never before achieved, whose full
implications are only now coming to light with LaRouche’s
discoveries in the domain of the science of physical economy,
and the elaboration of those ideas through the ongoing
research project of economic animations currently being
developed, under LaRouche’s personal direction, by a team of
young thinkers from the LaRouche Youth Movement.

Nevertheless, reaction dies hard. As soon as Riemann’s
audible words faded away, his method came under attack. At
first this attack took the form of stone-cold silence. After

1. Lyndon H. LaRouche has added the following point of emphasis:
“What needs to be stressed, is the crucial distinction from the usual pres-
entation of the tensor, from a mathematical formalist standpoint, to the ten-
sor defined, as a physical conception, that from the standpoint of physical
anti-entropy.

“The Riemannian tensor, as a physical conception, is intended to repre-
sent a principle of anti-entropic disequilibrium: the actual characteristic of
the physical universe.

“So, the concept of the Riemannian tensor does not proceed from the
mathematical formality to the physical reality, but, rather, superimposes the
concept of physical anti-entropy on the mere mathematical scheme.

“Think, for example, of the generation of the Kepler Solar System, of the
‘World Harmonics, from a lonely, fast-spinning Sun. The universe is driven
by an ontological conception of universal anti-entropy; that is what the
experimental evidence shows. The mathematical conception must be
enslaved to the characteristic physical-experimental actuality.

“There is where the lurking bear-trap lies, waiting to snare the mathe-
matical formalist!”
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Riemann’s premature death, the assault took on a more sophis-
tical form. While his students and collaborators continued to
animate his ideas, his enemies attempted to suffocate his pro-
gram under a system of mathematical formalism, typified by
the presentation in Luther Pfahler Eisenhart’s 1926 treatise,
Riemannian Geometry.> The problem with such treatments as
Eisenhart’s is not the use of mathematical formulas as such
(for Riemann utilized certain formal expressions himself), but
the substitution of formal expressions, for Riemann’s actual
ideas. In so doing, Riemann’s enemies succeeded, at least in
part, in imposing a new form of Euclidean dogma, under the
guise of a neo-Euclidean formalism maliciously misnamed
“Riemannian Geometry.” Since the effect of this sophistry has
now brought science, and in a broader sense, society as a
whole, to a breakdown point, it is necessary to revive
Riemann’s actual approach. The first step is to place
Riemann’s discovery inside the historical process in which it is
still unfolding.

From Brunelleschi to Kepler

Much to the dismay of the Babylonian priesthood from
which the dogmas of Euclid and Aristotle sprang, the human
mind can recognize and act on universal physical principles
without resort to mathematical formalism. Euclid’s Elements
themselves, reluctantly, but definitively, testify to this fact.
None of the discoveries reported in Euclid’s Elements was, or
could have been, discovered by the deductive method utilized
by Euclid. As anyone who has tried to actually re-create those
discoveries for himself soon realizes, the discoveries reported
therein can only be re-created in reverse order, beginning with

2. Luther Pfahler Eisenhart, Riemannian Geometry (Princeton, N.J.:
Princeton University Press, 1926).
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the physical construction of the five regular
solids as a consequence of spherical action, then
to the development of incommensurable magni-
tudes, proportions and numbers, and finally to
the construction of the plane figures. Even more
to the point, the devastating flaw in Euclid’s
Elements is embedded in the characteristic
which the Aristoteleans considered its most
viable attribute: the deductive method.

That flaw, as Késtner, Gauss, and Riemann
emphasized, is exposed by the Elements’
dependence on the validity of the parallel postu-
late a proposition which cannot be proven with-
in the deductive system on which the Elements
relies. As Gauss stated, without the parallel pos-
tulate, there are no similar triangles, and without
similar triangles, all the theorems of Euclidean
geometry fail. But, as Gauss also emphasized,
the parallel postulate assumes something that is
nowhere stated: that the physical universe is
infinitely extended, rectilinearly, or as Gauss
and Riemann would put it: flat.3

Though the achievements of Greek science in the genera-
tions following Euclid (most notably the accomplishments of
Archimedes, Eratosthenes, and Aristarchus) are derived from
the ante-Euclidean approach associated with the astrophysics
that the Egyptians and Pythagoreans denoted as Sphaerics, the
relative dominance of this saner form of science began to fade
with the murder of Archimedes by Roman soldiers in approx-
imately 212 B.C. The ensuing relative dominance of
Euclidean geometry (with the associated cultural decay of the
Roman Empire praised so highly by Lord Shelburne’s Edward
Gibbon), was brought to a close in 1436, with Brunelleschi’s
successful completion of the free-standing, self-supporting
cupola over the church of Santa Maria del Fiore in Florence.
From that time to ours, Brunelleschi’s Dome stands as a defi-
ant reminder that the real universe is not flat, as the Euclideans
would indicate, but is determined by physical principles,
which Gauss and Riemann would later express as physical
curvature (as will be developed more fully below).

As LaRouche emphasized in 1988, to the shock of many at
the time, the principle that Brunelleschi recognized and
employed in the successful construction of the Dome, was the
principle of least action expressed by the catenary—a princi-
ple which was not fully elaborated until Leibniz did so more
than two hundred years later. Nevertheless, what
Brunelleschi’s accomplishment demonstrates, is that the
human mind is capable of recognizing, acting on, and com-
municating knowledge of physical principles without ever
reducing those principles to a formal mathematical construct.
Subsequently, when Leibniz showed that the physical princi-

NASA
The most advanced approach to investigation of the universe “from the inside” was
initiated by Bernhard Riemann. Here: Galaxy MSI.

3. This, of course, is a characteristic of all Sophistry. The Sophist lies, but
never explicitly states what he is lying about.

Science 41



ple underlying the catenary could be characterized as a func-
tion of logarithmic functions, he gave that expression a math-
ematical form. Nevertheless, the mathematical expression of
Leibniz’s discovery is not the principle. It is a rigorously iron-
ical statement of the transcendental nature of the catenary prin-
ciple—a precise statement of a mathematical ambiguity from
which the principle that Leibniz discovered can be re-created
anew in the mind of the scientist.*

The universal principle which Brunelleschi’s achievement
exemplifies, was elaborated in the shadow of his newly creat-
ed Dome by Nicholas of Cusa. Writing in De Docta
Ignorantia, among other locations, Cusa insisted, on episte-
mological grounds, that the characteristic of action in the phys-
ical universe is not constant, but is always changing non-uni-
formly. This meant that, contrary to the Aristoteleans, physical
action did not conform to what was mathematically conven-
ient—perfect circles. Rather, Cusa showed that the non-uni-
formity of physical action is a characteristic of the universe’s
self-perfectibility, which is a more perfect condition than the
static, unchanging sterility of a world governed by Aristotle’s
perfect circles. Further, because human creativity is central to
the self-perfectibility of the universe, the mind is capable of
discovering, from within the unfolding universe, the underly-
ing principles governing it.

Cusa’s work reintroduced into science the requirement to
identify and measure a physical principle by the characteristic
of change expressed by the action of that principle in the phys-
ical world, a characteristic that Gauss and Riemann would
later refer to as curvature. The first, and perhaps most dramat-
ic, application of this was Kepler’s discovery of the principle
of universal gravitation.

A full pedagogical reworking of Kepler’s discovery, as
detailed in his 1609 New Astronomy, is currently being devel-
oped by a team of researchers from the LaRouche Youth
Movement (LYM), but a brief summary of the relevant points
is necessary for this discussion.

Kepler rejected the Aristotelean precept that knowledge of
the physical world must be confined to the domain of sense
perception, and that principles governing physical motion
were relegated to, what was for them, an ultimately unknow-
able, and unchanging, metaphysical domain. For Aristotelean
astronomers, this posed a particularly vexing problem,
because the full planetary motions extend outside the field of
vision of the observer, and the causes of that motion are com-
pletely outside the astronomer’s sensual and (for the
Aristotelean), intellectual ken. Consequently, the astronomers
of the Roman period disclaimed any truthful knowledge of
planetary motion, settling for mathematical descriptions of

4. Once stated in this ironical form, a means of calculation can be elaborated.
As Napier’s development of logarithms, Leibniz’s calculation of TT or
Gauss’s development of the hypergeometric series all indicate, such means
of calculations must express the ambiguities intrinsic to the original ironi-
cal form. This is distinct from today’s digital processors, who substitute real
thought for rapid brute force iterations.
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their speculations about how those motions might appear,
were they able to directly perceive them.

This view conformed perfectly to the prevailing feudalist
opinion that mortal man was, at best, a sophisticated beast
whose cognitive powers were outside of, and inconsequential
to, the “actual” universe, which the Aristoteleans falsely imag-
ined to be governed by a fixed set of eternally unchanging
laws. As such, mortal man, Aristotelean opinion held, must be
governed by the, apparently chaotic, laws of animal behavior,
without recourse to universal, eternal principles, which they
insisted did not change.’ But as a self-avowed adherent of
Cusa, Kepler realized that this view of man and the universe
was wrong. Man, through his powers of cognition, is capable
of knowing the principles governing the universe as principles
of change, as Heraclitus and Cusa both emphasized.
Consequently, Kepler understood the motions of the planets
and man’s investigation of them, as part of a single, unfolding,
self-developing creation, which included the development of
life and human cognition. Mortal man is not outside the uni-
verse, nor is the universe outside the province of mortal man.
Rather, mortal man, possessed with the power of cognition,
transcends mortality, playing a unique and integral role in the
eternally continuing development of the universe as a whole.

Consequently, Kepler emphasized, the best vantage point
from which to discover the principles of planetary motion is
not outside, but inside the universe:

For as the Sun in its revolution about its own axis moves
all the planets by the emanation which it sends out from
itself, so also the mind, as the philosophers tell us,
understanding itself and all that is in itself, stimulates the
use of reason, and by spreading and unfolding its sim-
plicity causes all things to be understood. And so close-
ly are the motions of the planets round the Sun and the
processes of reasoning linked and tied to each other that
if the Earth, our home, did not measure out its annual
circuit in the midst of the other spheres, changing place
for place, position for position, human reasoning would
never struggle to the absolutely true distances of the
planets, and to the other things which depend on them,
and would never establish astronomy.®

As such, he rejected the mathematical models of planetary

5. One sees this feudalist conception of the universe revived today in such
popularly held beliefs as the so-called Copenhagen interpretation of quan-
tum mechanics, or the radical forms of information theory associated with
Norbert Wiener, John von Neumann, et al., which insist that the universe is
fundamentally random and devoid of any possibility of comprehension by
man other than statistical description. This is the argument that was at the
core of the famous Einstein-Born correspondence. See: The Born-Einstein
Letters (New York: Macmillian, 2005), and Bruce Director, “On the 375th
Anniversary of Kepler’s Passing,” Riemann for Anti-Dummies, Part 65,
www.wlym.com.

6. Kepler, The Harmony of the World, translated by E.J. Aiton, A.M. Duncan,
J.V. Field (Philadelphia: American Philosophical Society, 1997), p. 496.
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motion that had been postulated by Ptolemy, Copernicus, and
Tycho Brahe. Though each model was radically different, all
three tried to describe the experimentally determined non-uni-
form motion of the planets, by fitting the observational statis-
tics into mathematically defined perfect circles. Kepler
painstakingly demonstrated in the opening section of the New
Astronomy, that such statistical methods were incapable of
determining the truth, as all three models gave virtually the
same statistical result. To this, the protagonists of Ptolemy,
Copernicus, or Brahe could raise no objection, as all three
accepted the Aristotelean belief that mathematical formalism
was the only certain form of knowledge.

But for Kepler, hypotheses concerning the true physical
causes are the only form of knowledge. Consequently, he pro-
ceeded to show that there is an anomaly inherent in the statis-
tical interpretations of Ptolemy, Copernicus, and Brahe which
reflects the existence of a physical principle not accounted for
in any of the three systems. Like the parallel postulate for
Euclid’s Elements, Kepler’s anomaly cannot be detected by
the methods of Ptolemy, Copernicus, and Brahe, and no
manipulation within the respective mathematical systems,
could eliminate it. Once identified, however, either the system
must be rejected, or its insanity must be adopted.

The underlying assumption of all three models, was the
Aristotelean insistence that motion of a material body cannot
be caused by an immaterial principle, but must be caused by
something within the body itself. Consequently, the
Aristoteleans saw the planetary orbit as the artifact of the plan-
et. Since the planet’s apparently non-uniform motion along the
arc of its orbit deviated from the presumed perfection of uni-
form circular motion, Ptolemy, Copernicus, and Brahe all
sought some point (equant) around which the planet would be
traversing equal arcs along its orbit. Kepler showed, exhaus-
tively, that no such point existed. No matter how cleverly one
tried to manipulate the statistics, with respect to the models of
Ptolemy, Copernicus, or Brahe, a discrepancy remained.

Kepler concluded that this discrepancy was not a statistical
aberration. It was a matter of principle. For Kepler, the plan-
et’s orbit is not the trace of its motion. Rather, the orbit is deter-
mined by the physical cause that is determining the planet’s
motion. That cause, Kepler insisted, is a physical principle
(gravitation) that pervades the universe. Under this principle,
there is a connection between the Sun and the planets individ-
ually (characterized by equal areas: equal times), and the Sun
and all the planets collectively (characterized by the harmonic
relationships among the planets’ minimum and maximum
speeds). The observational statistics were, for Kepler, simply
the footprints of the principle. Once the principle was identi-
fied, the footprints could be explained.

Thus, for Kepler, the planet’s non-uniform motion is guid-
ed at every infinitesimal interval by the harmonic characteris-
tics of the Solar System as a whole. Those harmonic principles
defined the planet’s orbit as what Leibniz would later call a
least-action pathway of the Solar System. In other words, the
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planets are not moving in one of infinitely many possible
orbits in an otherwise empty space. Rather, they are moving in
least-action pathways uniquely defined by the harmonic char-
acteristics of the Solar System. From the standpoint of the
planet, Kepler emphasized, that pathway is a straight line.
“Straightness,” as Gauss would later insist, is established by
physical, not a priori mathematical considerations. The
human mind judges those physical considerations as the char-
acteristic of change of a physical principle. That changing
characteristic, Gauss and Riemann would later express as the
notion of physical curvature.

Physical Curvature From Leibniz to Gauss

Kepler’s revolutionized physical astronomy demanded a
complete change in the prevailing mathematics, which is a far
cry from the state of science today. While Kepler pushed the
physics forward and demanded the creation of a new mathe-
matics consistent with it, today’s sophistical peer review sys-
tem insists on the opposite: No physical discoveries are
allowed into the temple, unless stated in terms of the already
existing mathematics.

By demonstrating that physical action is truly non-uniform,
Kepler had to confront the problem of how to measure the
motion of the planet as a function of the changing effect of the
principle of gravitation. That required the development of a
new mathematics that could express position as a function of
change, instead of denoting change as merely a difference in
position. Kepler pointed to the direction the new mathematics
must take, and demanded that future scientists develop it.

He specified that the entire Solar System must be consid-
ered as the unit of action, and the motion of the planet at any
moment must, accordingly, be measured as a function of the
harmonic characteristics of the Solar System as a whole. Those
harmonic characteristics, as reflected in the role of the five
Platonic solids and the proportions corresponding to musical
intervals among the planet’s minimum and maximum speeds,
determined the number and positions of the planetary orbits.
Within each orbit, the planet’s motion was measured with
respect to the orbit as a whole. Thus a mutually inverse rela-
tionship exists between the momentary effect of gravity on the
planet, and the total effect of what Gauss would later call the
gravitational potential, of the Solar System as a whole.

Leibniz generalized this conception of Kepler by the intro-
duction of the notion of the infinitesimal as the expression of
the pervasive, yet ever-changing, effect of a universal princi-
ple at every point of physical space-time. He expressed the
inverse relationship between the infinitesimal and universal
expressions of that principle as, respectively, the differential
and integral forms of the calculus. This single infinitesimal
calculus of Leibniz is the only true calculus. The frauds of
Newton and Cauchy are nothing more than crude sophistries
aimed at eliminating the metaphysical significance of
Leibniz’s physical concept of the infinitesimal. While the
infinitesimal-free formalisms of Newton, Cauchy, and their
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progeny might be appealing to pure mathematicians, anyone
seeking to understand anything about the physical universe is
drawn back, consciously or not, to some form of Leibniz’s
conception. The relative potency, or lack thereof, of a scientist,
is, in part, reflected in the degree to which that scientist is con-
scious, explicitly or implicitly, of the preeminence of Leibniz’s
method.

Leibniz’s approach to the calculus is recounted primarily
through his own writings and those of his collaborator, Johann
Bernoulli. It has been treated, pedagogically, in previous
installments of this series (see Riemann for Anti-Dummies,
www.wlym.com). For reasons relevant to this pedagogical
discussion, Leibniz’s and Bernoulli’s calculus will be exam-
ined, through the example of its application to the catenary,
from the standpoint of its later development by Gauss and
Riemann.

The catenary is the crucial example of the metaphysical
truthfulness of Leibniz’s calculus. All prior attempts, most
notably Galileo’s, failed to explain the catenary’s shape from
mathematical considerations. It was only through the applica-
tion of Leibniz’s calculus to the physical characteristics of the
hanging chain, that Bernoulli and Leibniz succeeded in reveal-
ing the metaphysical principle underlying the catenary.’

Both Leibniz and Bernoulli recognized that the shape
assumed by a hanging chain of uniform thickness reflects the
physical effect of applying a tension across a gravitational
potential. Therefore, they rejected any attempt to explain the
catenary by assuming it was a “curve” in an otherwise empty
and flat Euclidean space. Rather, they considered the shape of
the curve as expressing the non-uniform changing interaction
of gravity and tension. This can be confirmed by the experi-
ments Bernoulli specifies in his text on the integral calculus,
or, those used in pedagogical presentations by members of the
LYM.8 Anyone performing these experiments will recognize a
change in the direction of the chain from point to point, as the
physically determined effect of the changing relationship of
gravity and tension. Thus the curvature of the chain is not an
arbitrary deviation from Euclidean straightness. It is the
expression of an experimentally determined physical charac-
teristic.

It is important to emphasize, however, that curvature, in
this sense, is not a mathematical object, but a mathematical
expression of a physically determined characteristic from
which the metric relations of the catenary are derived. These

7. See Johann Bernoulli, Die Erste Integralrechnung, 1691, translated into
German from the Latin by Dr. Gerhard Kowalewski,
http://historical.library.cornell.edu/math/index.html; G.W. Leibniz, “Two
Papers on the Catenary Curve and Logarithmic Curve,” Acta Eruditorum,
1691, translated into English by Pierre Beaudry, Fidelio magazine,
www.schillerinstitute.org; Bruce Director, “Justice for the Catenary,”
Riemann for Anti-Dummies, Part 10; “Long Life of the Catenary,” Riemann
Sfor Anti-Dummies, Part 41, www.wlym.com.

8. See Lyndon H. LaRouche, Jr., “The Principle of Power,” Box 12, EIR, Dec.
23, 2005, www.larouchepub.com.
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are expressed by the functional relationship between the length
of the chain within a given interval, and the changing curva-
ture within that same interval. In the case of the catenary, this
relationship is expressed mathematically by Bernoulli’s differ-
ential equation which expresses the length of the chain as a
function of the changing effect of gravity on tension.’

Like a planetary orbit, the catenary exhibits a total curva-
ture which is expressed by the overall shape of the hanging
chain.'® Also like a planetary orbit, the curvature is changing,
differently, in every infinitesimal part. This infinitesimal cur-
vature is an expression of the action of a physical principle act-
ing tangentially on the physical chain as if it were acting on the
visible world from outside. Though outside the visible world,
it is not outside the universe. Consequently discovering this
infinitesimal expression is the means by which man can dis-
cover, from the inside of a physical process, the principles
governing it from outside the visible domain. The infinitesimal
curvature can be measured, as Leibniz proposed, by the
inverse of the radius of the osculating circle at that point. (See
Figure 1.) However, that curvature can also be measured from
inside the chain, so to speak, by the experimentally measured
changing effect of the interaction of gravity and tension on the
chain, as specified by Leibniz’s and Bernoulli’s differential
functions.

However, deeper investigations of the physical universe
requires the ability to discover, from the inside, the effects of
many principles acting together at a single place in physical
space-time. This notion of “intrinsic” curvature becomes more
clear, when understood from the standpoint of Gauss’s devel-
opment of it in his famous treatise on curved surfaces.!! Gauss
had been deeply involved in physical investigations in geo-
desy, geomagnetism, and astronomy, such as his determination
of the orbit of Ceres, his determination of the shape of the
Earth, and his determination of the nature of the Earth’s mag-
netic field. Like
Kepler’s determi-
nation of the prin-
ciples of planetary
motion, all such
investigations
demanded the
determination of
physical princi-
ples from the
inside. For Kepler,
that meant deter-
mining the mo-

FIGURE 1
Osculating Circle

9. See Boston LYM pedagogy on catenary.

10. Leibniz, op. cit. Leibniz showed this to be the arithmetic mean between
two exponential functions, a fact with enormous metaphysical implica-
tions.

11. Carl Gauss, Disquisitiones Generales Circa Superficies Curvas (1828)
Gauss, Werke, Vol. IV.
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tions of the planets from a planet (Earth) that was also mov-
ing according to the very principles Kepler was trying to dis-
cover. But Gauss had an additional problem. Whereas Kepler
had the benefit of a large number of widely spaced observa-
tions from which to work, Gauss was working from a small
number of relatively infinitesimal measurements. This
prompted Gauss to develop an extended form of Leibniz’s
calculus, in which he investigated the relationship between
global physical characteristics and their expression in the
infinitesimally small. This approach has since become known
as differential geometry.

Such physically determined surfaces, Gauss insisted, must
not be considered as curved objects otherwise embedded in a
flat, three-dimensional Euclidean space, but as what Riemann
would later call doubly-extended manifolds. This concept,
though new to Gauss in this form, harkens back to a concept
Kepler pronounced in the second chapter of the Mysterium
Cosmographicum. Referencing Cusa’s emphasis on the episte-
mological importance of the difference between the curved
and the straight, Kepler distinguishes between the globe,
which is a sphere embedded in three-dimensional space, and a
sphere, which he considers to be simply the surface. The for-
mer, Kepler emphasized, is a mixture of the curved and the
straight, whereas the latter is pure curvature.

Consistent with this view of Kepler, Gauss also banished
the assumption of the flatness of Euclidean geometry in his
investigation of curved surfaces, and considered the surfaces
as determined purely by their curvature. Adopting a method
from astronomy and geodesy, Gauss measured the curvature
of the surface by mapping the changing directions of the nor-
mal to the surface onto a sphere.'? (See Figure 2.) The areas
of the resulting spherical maps (called Gauss maps) are greater

12. In astronomy and geodesy, the normal is the plumb bob and the sphere is
the celestial sphere.

FIGURE 2
Gauss Map by Parallel Normals

ELLIPSE
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when the corre-

SpOnding areas of FIGURE 3
the surface are OUrface Measure of
more curved, and Curvature

less when the cor-
responding areas
of the surface are
less curved. Gauss
called the total
area of the spheri-
cal map the total,
or integral, curva-
ture of that region
of the surface.
Within that region, however, the curvature could vary quite
widely from place to place. Thus, it was necessary for Gauss
to develop a concept of local, or infinitesimal measure of cur-
vature at every point within that region. This he defined as the
proportion between the area of every infinitesimally small area
of the surface and the corresponding infinitesimally small area
of the Gauss map. He showed that this quantity could also be
measured by the inverse of the product of the radii of the oscu-
lating circles to the curves of minimum and maximum curva-
ture at that point. (See Figure 3.) From these two measure-
ments, integral and local curvature, Gauss could quantify the
characteristics of the surface in the large and the changing
characteristics in the small.

To measure the curvature of a surface in this way, requires
viewing the surfaces from the outside, as if they were embed-
ded in a higher dimensional space.!®> However, Gauss, like
Cusa, Kepler, and Leibniz, realized that in real science, one
must be able to measure the physical curvature from the
inside, as Gauss had done for the determination of the orbit
of Ceres, the shape of the Earth, or the characteristics of the
Earth’s magnetic field. This meant being able to determine
how the surface is changing in the infinitesimally small, from
within the surface. To do this, Gauss relied on an application
of Leibniz’s principle of least action, which, in the case of
surfaces, is expressed by the behavior of that surface’s
shortest lines, i.e., geodesics.14 The characteristics of these
geodesics, like the catenary or a planetary orbit, are defined
by the nature of the physical principles from which the sur-
face is generated. Thus, their behavior expresses those phys-
ical principles.

To do this, Gauss first showed that if, from any point on a
surface, a set of geodesic curves of equal lengths is extended,

13. The normal, being perpendicular to the surface, is extending into the space
outside the surface.

14. Gauss’s investigation of the properties of shortest lines goes back to some
of his earliest reflections on the insanity of Euclidean geometry. One of his
earliest entries in his diaries is a remark about the Euclidean definition of
a plane. For Gauss, the characteristics of a plane and line could not be
given a priori, but only as a consequence of the physical characteristics
(curvature) of the surface.
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FIGURE 4
Geodesics from a Point

FIGURE 5
Geodesics with
Orthogonal Curves

FIGURE 6
Geodesic Coordinates

then the curve that connects the endpoints of those geodesics
will be perpendicular to all the geodesics. (See Figure 4.)
More generally, he showed, that if any arbitrary curve is drawn
on a surface, and geodesic curves of equal length are drawn
perpendicular to that arbitrary curve, the curve connecting the
endpoints of those geodesics will also be perpendicular to
them. (See Figure 5.) Consequently, on any surface there is an
intrinsic set of orthogonal curves, at least one of which is geo-
desics. (See Figure 6.) In this way Gauss dispensed with all a
priori coordinate systems such as that of Descartes, and
replaced them with a set of parameters that expressed the
physical nature of the surface itself.

From this Gauss was able to develop a means to express the
length of a geodesic curve as a function of the curvature of the
surface, and vice versa. That length could be expressed as a
function of the orthogonal curves that parametize the surface
by a generalized form of the Pythagorean theorem. (See
Figure 7.) Unlike on a “flat” Euclidean surface, in which the
relationship between the length of the hypotenuse and the legs
of the right triangle is independent of its position on the sur-
face, on a curved surface that relationship changes depending
on its position. That change is a function

the longitude line from Gottingen to Altona, from which, on
the basis of a 16” of an arc discrepancy, he developed a new
conception of the entire shape of the Earth!

However, the expression of this relationship between
length and curvature was mathematically quite complicated.
Consequently, Gauss also found a much simpler expression of
the relationship between the behavior of the geodesic and the
curvature. He recognized that in the real, anti-Euclidean
world, there is no such thing as similar triangles. On any
curved surface, the sum of the angles of a triangle formed by
shortest lines is always greater or less than 180 degrees,
depending on whether the surface on which that triangle exists
is positively or negatively curved.'® This difference, which
Gauss called the angular excess, or defect, is a function of the
area of the triangle. On a positively curved surface, the greater
the area of the triangle, the greater the angular excess, up to a
maximum. On a negatively curved surface, the smaller the
area of the triangle, the greater the angular defect, down to a

15. A similar relationship exists for any polygon.

of the changing curvature of the surface.
Consequently, Gauss’s generalized
Pythagorean function, called Gauss’s
metric function, expresses how this rela-
tionship changes from place to place on
the surface, depending on the changing
curvature. (See Figure 8.) This estab-
lished a determinable functional relation-
ship between length (metric) and curva-
ture.

From a physical standpoint, this meant
that he could measure the changing cur-
vature of the surface from the physically
measured changes in the lengths of geo-
desics with respect to the physical param-
eters of the surface. Gauss applied this
method in his famous measurement of

FIGURE 7

Generalized Pythagorean

FIGURE 8
Changing Generalized
Pythagorean
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minimum of zero. The specific proportion between the angu-
lar excess and defect and the area is a function of the curva-
ture. On a more (e.g., positively) curved portion of a surface, a
triangle encompassing a small area will have a larger angular
excess, than a triangle encompassing a similar sized area on a
less curved portion. Thus, the curvature of a portion of the sur-
face is expressed by the changing relationship between the
area of a geodesic triangle and the angular excess or defect.

In this way, Gauss showed that the curvature of a surface
could be measured by the proportion of the spherical excess
(or defect) to the area of the geodesic triangle. This enabled the
scientist to determine the characteristic curvature of the sur-
face from on the surface without regard to the arbitrary fiction
of Euclidean space, or some arbitrary fixed Cartesian, or other,
coordinate system.

Though the formulas expressing these relationships could
become very complicated, Gauss also developed the means to
carry out their calculation, making his concepts directly appli-
cable to the physical problems he was investigating.

In this way, Gauss took the first steps to liberate mankind
from the lingering oppression of Euclidean geometry. His pro-
tégé, Bernhard Riemann, would push it further.

A Brief Interlude on Time

Before turning directly to Riemann’s contribution, it is nec-
essary to include a brief note on the principle of least action,
both for the sake of the scientific completeness of the argu-
ment presented, and to wrench the reader away from any lin-
gering dependence on a priori notions of space and time.
Perhaps even more stubborn than the adherence to the spatial
relations of Euclidean geometry, is the psychological adher-
ence to a belief in the existence of some absolute measure of
time. As Plato emphasized in the 7imaeus, later echoed, most
notably by Philo, Augustine, and Cusa, time is not an absolute
quantity measured by some great grandfather clock in the sky.
Time is a relation of change. As Plato stated it, “Zime is the
moving image of eternity.”

This is the way Kepler understood time. Instead of measur-
ing the non-uniform motion of the planet by a measure of uni-
form absolute time (mean Sun) Kepler measured time by the
planet’s motion itself (true Sun). He took as the unit of time the
unique interval in which the planet’s motion is the same at
beginning and end: the entire orbit. Equal portions of time
were measured by those units with equal amounts of motion—
i.e., equal orbital areas. These orbital areas are relative to the
orbit, not absolute. Thus the planet’s motion defines what is
time. Without the motion, there is no time.

A similar issue is raised by Fermat’s subsequent discovery
that light travels the path of least time.'® Under simple reflec-
tion, the path of light is the shortest distance. Yet under refrac-
tion, Fermat showed, the path of light is the path of least time.

16. See LaRouche, “Principle of Power,” Box 5, op. cit.
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The difference between the two physical actions is, that under
reflection there is no change in medium, whereas under refrac-
tion, there is. The change in medium produces a change in the
physical characteristics of the manifold of action. That physi-
cal change defines a new behavior for the shortest path—i.e.,
the geodesic. Under reflection, that geodesic is the path of least
distance. Under refraction, it is least time. The nature of light
doesn’t change. It always seeks the shortest path. But when the
characteristics of the manifold in which that light is acting
change, the shortest path changes from least distance to least
time.

Thus again, time is not an absolute quantity, but a charac-
teristic of change of physical action a change in the character-
istics of physical space-time.

In the real world there is no absolute time. There is, as
Heraclitus, Plato, and Cusa emphasized, change, of which
time is a relative measure. The most efficient means to wrest
oneself from the crippling belief of absolute time is to recog-
nize the obvious: The only unit of absolute time is eternity. All
smaller actions are just parts of eternity whose measure is rel-
ative to the manifold in which it occurs.

Riemannian Manifolds and Tensors

Riemann began his June 10, 1854 habilitation dissertation
in the tradition of Hans Christian Andersen’s little boy in the
story about the Emperor with no clothes. He declared that
though the assumptions of Euclidean geometry have been
accepted for more than two thousand years, no one had both-
ered to consider whether they are true. Since all physical
action is experimentally determined to be anti-Euclidean,
Riemann insisted that the a priori assumptions of Euclidean
geometry must be abolished and banned from future consider-
ation in science.

Riemann replaced the arbitrary assumption of an absolute
Euclidean space, with the idea of a physical manifold of action
whose “dimensions,” like the parameters of Gauss’s surfaces,
denote the physical principles acting in that manifold. The
number of these dimensions is not fixed a priori, as are the
three linear dimensions of Euclidean geometry, but are deter-
mined by the number of physical principles that must be con-
sidered to fully express the physical action of the manifold.

Thus, Riemann extended Gauss’s notion of a surface to an
n-tply extended manifold, of which Gauss’s surfaces represent
a special case of a doubly-extended manifold. For example,
the path of light under reflection can be seen as a geodesic in
a simply-extended manifold, because the position of the light
can be determined completely from one physical parameter:
the angle of incidence. On the other hand, the path of light
under refraction is a geodesic in a doubly-extended manifold,
because the presence of the additional principle requires the
determination of position with respect to two parameters: the
angle of incidence and the index of refraction. Again, it is not
the light which changes from reflection to refraction, but the
manifold in which it is acting. That change in the physical
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principles acting on the manifold produces a corresponding
change in the characteristic of the geodesic, from the shortest
path to the path of quickest time.

In a fragmentary note written between 1852 and 1853, prior
to the delivery of his habilitation dissertation, Riemann gave
an example of his concept of a manifold determined by phys-
ical principles, not a priori geometrical dimensions.

that this treatment of geometry, would, nevertheless, be
extremely unfruitful, since we would not find any new
theorems and that what is achieved easily and simply
through the representation of space is only turned into
something complex and difficult. One has to, in general,
opt to take the opposite way, and where one runs into the
geometry of manifolds of more dimensions, as in the

The concept of a manifold of multiple dimensions
subsists independently of our intuitions of space. Space,
plane, and line are only the most intuitive examples of a
manifold of three, two, or one dimensions. Yet without
having the most minimal intuition we would be able to
develop an entire Geometry. I want to explain this with
an example:

Suppose that I wanted to make an experiment or
observation and it were only important to me to establish
one numerical value, say, the degree of heat. In this case,
all possible results could be represented by a continuous
series of numerical values from positive infinity to nega-
tive infinity. But suppose that I wanted to determine two
numerical values, say, I wanted to make a determination
of temperature and a determination of weight, then the
results would have to be conditioned by two magnitudes
x and y. Here I would only obtain the totality of cases if
I were to give x and y all values between negative infin-
ity and positive infinity, combining each value of x with
each value of y. I will obtain a unique case so long as x
taken also with y has a determined value.

Now I can extract out the totality of cases, a complex
of cases, I can, for example establish the equation
ax+by+c=0 and now put all those cases together where
x and y satisfy this equation: I were able to call this com-
plex of cases a straight line. From this definition of a
straight line I would be able to derive all those theorems
about straight lines that occur in geometry. It is clear that
one could proceed in this way without relying on the
most minimal intuitions about space.

By this manner of treatment of geometry, or the the-
ory of manifolds of three dimensions, all the axioms
which are taken in the usual manner of treating spatial
intuitions, as for example, that through any two points
only one straight line is possible, the first axiom of
Euclid, disappear, and only those which are valid for
magnitudes in general, for example, that the order of
summands is arbitrary, remain.

One now finds easily, how, in the same way, one can
obtain a manifold of two dimensions, independent of the
existence of a plane, also how one can reach a magni-
tude of arbitrarily many dimensions. We only must
make observations which [. . . concern the determina-
tion of many numerical magnitudes. Sentence complet-
ed by Heinrich Weber.]

But it is also interesting to understand the possibility
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study of definite integrals in the theory of imaginary
magnitudes, one uses the intuitions of space as an aid. It
is good to know, how, through this, one achieves a true
overview about the subject, and only through this way
can the essential points be directly brought forward.

Thus, with Euclidean a priori dimensions replaced by
physical principles whose number and characteristics reflect
the physical characteristics of a manifold of physical action, it
fell to Riemann to outline how to express the functional rela-
tionship among these principles, without resort to any a priori
assumptions. The preliminary direction for this was given in
his habilitation dissertation through the development of his
concept of a “multiply-extended magnitude.”

Action in an n-tply extended physical manifold, Riemann
insisted, must be expressed by the appropriate n-tply extended
magnitude. Such magnitudes do not express a fixed set of rela-
tionships as in Euclidean geometry. Rather, Riemann’s n-tply
extended magnitudes express the dynamic relationships among
the principles that determine the physical action in the manifold.

An elementary example is the ancient Pythagorean investi-
gation of the line, square, and cube. Think of a line, square, and
cube whose segment, side, and edge, respectively, are all the
same length. Are these lengths all the same magnitude? From
the standpoint of Euclidean geometry, or formal algebra, the
answer would be yes. But from the standpoint of the physical
geometry of the Pythagoreans, Gauss, and Riemann, the answer
is, absolutely not. The only magnitude appropriate to the square
is one which expresses the dynamic relationship between length
and area, which the Pythagoreans demonstrated is incommen-
surable with a linear magnitude. Similarly, the only magnitude
appropriate to the cube is one that expresses the dynamic rela-
tionship among length, area, and volume. Under this cubic mag-
nitude, all subsumed relationships are redefined. For example,
the relationship between length and area in a cubic magnitude,
is different from the relationship of length and area in the square
one. As the constructions of Plato and Archytas demonstrate,
each object is generated by a distinct principle. Each is the prod-
uct of a different physical manifold, with a specific number of
principles and a distinct, characteristic curvature.!”

Riemann freed science from the crippling effects of trying
to investigate the physical universe using the arbitrary meas-
uring rods and clocks of absolute Euclidean space and time.

17. See Bruce Director, “Archytas From the Standpoint of Cusa, Gauss, and
Riemann,” Riemann for Anti-Dummies, Part 42, www.wlym.com.
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Once freed, the physical universe itself designates the appro-
priate quantities by which it should be measured. Just with as
the Pythagoreans’ demonstration of the differences among a
line, square, and cube, Cusa’s insistence that the curved can
never be measured by the straight, or Kepler’s understanding
that the planet’s motion defined the meaning of time,
Riemann’s concept of physically determined n-tply extended
manifolds defined a new form of magnitude. One form of such
n-tply extended magnitudes, relevant to the study of physical
economy, is the modern notion of a tensor.

A tensor is a type of quantity in which the dynamically con-
nected relations, within and among n-tply extended manifolds,
are expressed as a unified magnitude.

Although there are formal mathematical expressions of a
tensor, such as that presented in Eisenhart’s text, and although
these formulas are, at times, useful, such expressions in for-
mulas do not truly embody Riemann’s idea. The idea must be
gained first, before the formulas. As Riemann indicated in the
fragmentary note above, this is best achieved through the ped-
agogical use of geometrical examples. In this respect,
Riemann is echoing Plato, Cusa, and Gauss, who all empha-
sized the metaphorical employment of geometry for the com-
munication of concepts that lay outside the domain of sense
perception. In such cases, all warned, that though the geomet-
rical examples are indispensable for our understanding, they
are a guide to, not a substitute for, the conception from which
they are generated. In his habilitation dissertation, Riemann
issued a similar admonition:

These relations of measure can be investigated only in
abstract notions of magnitude and can be exhibited con-
nectedly only in formulae; upon certain assumptions,
however, one is able to resolve them into relations which
are separately capable of being represented geometrical-
ly, and by this means it becomes possible to express geo-
metrically the results of the calculation. Therefore if one
is to reach solid ground, an abstract investigation in for-
mulae is indeed unavoidable, but its results will allow an
exhibition in the clothing of geometry. For both parts the
foundations are contained in the celebrated treatise of
Privy Councillor Gauss upon curved surfaces.

The modern notion of a tensor arises directly from
Riemann’s preliminary idea of the nature of an n-tply extend-
ed magnitude. In developing this idea, Riemann extended
Gauss’s notions of curvature and metric relations from his
doubly-extended surfaces to Riemann’s n-tply extended man-
ifolds. From this standpoint, curvature expresses the dynamic
interacting relationship of the n physical principles acting in
the manifold, while the metric expresses the behavior of the
least-action pathways—i.e., geodesics—expressed in the man-
ifold. To grasp these points, one must bear Riemann’s admo-
nition in mind. Use the example of Gauss’s concepts of curva-
ture and metric as a special case, and imagine the extension of
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these concepts into manifolds that cannot be directly visual-
ized. What is lost by not being able to visualize such manifolds
from the outside, is gained by being compelled to discover
their nature from the inside.

Begin by extending the idea of a curved surface to a con-
cept of curvature for a triply-extended magnitude: a, so-to-
speak, curved volume. To do this one must be ruthless in
rejecting the a priori notions of Euclidean space. Such a
curved volume is not a big square box in which curved action
occurs, but a physical manifold defined by the action of three
physical principles, or one principle acting in three directions,
as, for example, in the case of the magnetic field of the Earth.
If one now imagines moving around in such a manifold (such
as the motion of a compass needle as it moves through the
Earth’s magnetic field), one would experience a changing
effect of the physical principles as a distinct change in curva-
ture in each of (in this example) three directions. However the
ability to establish any visual representation (even one as inad-
equate as the one just given), of this same characteristic in a
manifold greater than three, is futile. Nevertheless, a precise
concept of such multiply-extended curvature can be formed in
the mind.

Riemann generalized this concept showing that at any
point in an n-tply extended manifold there are n(n—1)/2
distinct surface directions intersecting, each with its own
unique curvature, which together determine the curvature of
the manifold act-
ing on that point.8
These curvatures,
all of which can
be completely dif-
ferent, can be mea-
sured, as Gauss
did, as the propor-
tion between a
geodesic  trian-
gle’s angular ex-
cess, or defect,
and the area of
that triangle en-
compasses.'® Rie-
mann defined the
measure of curva-

FIGURE 9
Parallel Transport

18. In the example of a triply-extended manifold there would therefore be
three surfaces intersecting at each point.

19. Tuillio Levi-Civita, a student of Gegorio Ricci, who, in turn, was a student
of Riemann’s collaborator Enrico Betti, later introduced another, even
simpler, way to find the curvature of a surface element by measuring the
change in the direction of a vector that results when that vector is trans-
ported around a small area of the surface, so as always to remain parallel
to itself. Intuitively it would seem that such an action would not cause a
change in the direction of the vector. On a flat surface that is true. But if
the surface has any curvature at all, the curvature itself will cause a change
in the direction. (See Figure 9.)
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ture at each point of the manifold as the magnitude that
expresses the n(n—1)/2 distinct surface curvatures at that
point a magnitude that is now called the Riemann curvature
tensor.

This tensor is not a single number. It is a magnitude that
expresses how the n(n—1)/2 distinct curvatures are changing at
each point, and, how this change changes, from place to place
in the manifold. Each distinct curvature measures the change
within one of the intersecting surfaces. But, just as the cubic
magnitude defines the relationship between length and area
differently than the square magnitude, Riemann’s curvature
tensor defines each lower component curvature from the
standpoint of the dynamics of the manifold as a whole.

In the case of Gauss’s doubly-extended manifolds
n(n—1)/2 equals one. Consequently, the curvature tensor has
one component—Gauss’s measure of curvature as defined
above.? For a triply-extended manifold, (a curved “volume”),
n(n—1)/2 equals three. Thus, to define the measure of curva-
ture at a point of a triply-extended manifold requires a tensor,
that expresses the functional relationship among three compo-
nent functions, each of which expresses the changing curva-
ture of a surface. The curvature tensor, therefore, expresses the
changing relationship among these three measures of curva-
ture, as a single, subsuming, type of function. Again, the three-
foldedness of this magnitude cannot be expressed simply by
one number, or simply by three individual measures of curva-
ture. Rather, one n-tply extended magnitude, or tensor, is
required.

For a quadruply-extended manifold, six surface directions
will intersect at each point, establishing a Riemann curvature
tensor expressing a functional relationship among these six
distinct measures of curvature.

Though such a manifold cannot be directly visualized, with
Riemann’s approach, its measure of curvature can be clearly
defined.

In addition to this notion of curvature of an n-tply extend-
ed manifold, Riemann defined the concept of an n-tply extend-
ed metric. To do this he extended Gauss’s generalization of the
Pythagorean metric of the geodesic from doubly-extended to
n-tply extended manifolds. Recall that Gauss showed that for
a doubly-extended manifold, the length of the geodesics are
expressed by three functions of the two parameters that define
the surface.?! These three functions express the relationship
between the length of a geodesic and the changing curvature
of the surface.

For a triply-extended manifold, one can imagine, that
instead of the geodesic changing with respect to two parame-
ters (surface differential), it is changing with respect to three,
which form, so to speak, a volume differential. As this volume
differential moves around the manifold, the length of the geo-

20. It is important to note that that one component expresses the dynamic rela-
tionship between the two parameters that define the surface.
21. Denoted E, F, and G by Gauss.
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desic it contains changes. To express the relationship between
the length of the geodesic and the three parameters that define
the volume differential, requires a tensor that expresses a func-
tion among six functions.

Again, as inadequate as this visualization is for a triply-
extended manifold, even such an indirect visualization is
impossible for manifolds whose extension is greater than
three. Nevertheless, Riemann developed a precise concept
of such an n-tply extended metric. He showed that in an n-
tply extended manifold there are, in principle, n(n+1)/2
functions of the manifold’s n physical parameters, necessary
to define the metric.??2 These n(n+1)/2 functions have since
become known as the Riemann metric tensor. They express
the changing effect of the curvature of the manifold on the
measurements of the lengths of the geodesic lines. The
above examples, though somewhat abstract, nevertheless
provide a basis for forming a pedagogical (as opposed to
merely formal) conception of the Riemann curvature and
metric tensors. Broadly defined, the notion of a Riemannian
tensor expresses a definite set of functional relationships
among the n physical principles acting together to produce
the total effect in an n-tply extended manifold of physical
action.

Further, Riemann’s extension of Gauss’s notions of curva-
ture to n-tply extended manifolds, provides a means to deter-
mine the physical characteristics of such a manifold from the
infinitesimal expressions of those characteristics—i.e., from
inside the manifold.

Riemann not only developed the form of the relevant ten-
sors, he also provided an experimental example and elabo-
rated a means for their calculation. In an 1861 paper submit-
ted to the Paris Academy of Science, in response to a prize
question concerning determining the flow of heat in a
homogenous solid body as a function of time and two other
variables, Riemann developed a physical example of the cur-
vature of an n-tply extended manifold. In that paper Riemann
wrote:

The expression

\/ S byds, ds,
L]

can be regarded as a linear element in a general n-fold
extended space lying outside our intuition. If in this
space we draw all possible shortest lines from the point
(s1,82, ... s,) whose initial directions are characterized
by the relations: ads;+ Bsi; ads,+ Bsy; ... ; ads,+Bs,
(o and B being arbitrary quantities), these lines form a
certain surface that can be thought of as situated in the
usual space of our intuition. In that case the expression

22. These functions are the extension of Gauss’s functions E, F, and G for sur-
faces.
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will be a measure of the curvature of the surface at the
point (1,53, ... 8,).%

The spinning top, discussed in the last installment of this
series, provides another pedagogical example of a manifold of
physical action in which tensors are required to express the
physical action.?* As discussed previously, the top’s motion is
the result of its changing relationship to the gravitational
potential and the angular momentum generated by the top’s
spinning. The effect of each is expressed by a vector compris-
ing three component functions. Thus, to express the top’s
motion requires a tensor expressing the changing relationship
of the two vectors. This tensor expresses the physical manifold
in which the top is spinning, which, as Felix Klein himself was
forced to admit, expresses an anti-Euclidean manifold. But,
unlike Klein, who pompously insisted that this anti-Euclidean
manifold is purely mathematical and has no metaphysical sig-
nificance, this anti-Euclidean manifold is the only one with
both physical and metaphysical reality.

One of the more famous examples of an application of
Riemannian-type tensors to physics is Albert Einstein’s use of
them in his general theory of relativity, in which he expressed
the gravitational relationships of physical space-time by a
complex of tensors.

These cited examples, however, only scratch the surface.
They are examples of the investigations of physical manifolds
in which the principles acting are limited to those associated
with the abiotic domain. In the n-tply extended manifolds
studied in the science of physical economy, physical principles
of the biotic and cognitive domains are also acting. Further, the
relationships between these principles are dynamically anti-
entropic. Thus an extension of Riemannian-type tensors is
required to express the dynamic relationship among manifolds
of increasing degrees of extension. Before outlining those
requirements, however, it is necessary to consider the other
side of the matter investigated by Riemann.

The Physical Topology of Self-Bounded
Manifolds

In the above discussion of the generalized form of differen-
tial geometry, the notion of physical curvature was extended
into manifolds defined by n physical principles and investigat-
ed as that characteristic is expressed in the infinitesimally
small. This type of investigation is crucial for progress in sci-
ence, because it is in the infinitesimal regions that the charac-
teristics of curvature and metric relations are measured, and it
is from the anomalies discovered by these measurements that

23. Bernhard Riemann, Mathematische Werke (Berlin: 1990), p. 435.
Translation from Kolmogorov, Yushkevich, Mathematics of the 19th
Century, translated by Roger Cooke (Berlin: Birkhauser Verlag, 1996), p.
85.

24. See Bruce Director, “View from the Top,” Riemann for Anti-Dummies,
Part 67, www.wlym.com.
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the existence and nature of new physical principles are dis-
covered. As Riemann emphasized in his habilitation disserta-
tion, “Knowledge of the causal connection of phenomena is
based essentially upon the precision with which we follow
them down into the infinitely small.”

However, these characteristics in the small, Riemann
understood, are not determined completely by the action in
the local regions of a physical manifold. Just as singular
events that occurred thousands of years ago, or an intention to
produce a result two generations hence, determine the imme-
diate actions in society today, the local characteristics of a
physical manifold reflect the global nature of the manifold.
Riemann showed that these global characteristics are defined
by such features as the number of singularities and the condi-
tions at the boundary of action. In fact, though the local meas-
ures of curvature and metric relations can vary quite widely
within a manifold, there are certain global characteristics
which have a determining effect on their physical signifi-
cance. Riemann referred to the investigation of these global
characteristics as belonging to the domain of “analysis situs.”
Later, another of Gauss’s students, Johann Listing, adopted
the term “topology” (from the Greek word topos, meaning
position) for this study. As will become more apparent below,
it is only by taking into account the relationship between the
topological and local characteristics, that it is possible to
know anything fundamental about the physical process under
investigation.

In his habilitation dissertation and the fragment cited
above, Riemann indicated that the context for an investiga-
tion into this relationship between local and topological
characteristics lay in his study of complex functions, in
which he expressed the notion of a self-bounded, multiply-
connected manifold in the form of what have since become
known as Riemann surfaces. Riemann developed the initial
work in this area, under the direction of Gauss, in his 1851
doctoral dissertation. Then, subsequent to his habilitation
dissertation, Riemann deepened his investigations in his
famous studies of Abelian functions, minimal surfaces, and
hypergeometries.>

Though Riemann’s discovery in this area is a unique
advance in knowledge, its roots reach back to Plato and the
Pythagoreans, who insisted that all investigation of the uni-
verse must begin with a conception of the nature of the uni-
verse as a whole. In the Timaeus, Plato expressed this nature
as the monotheistic concept that the universe is a single cre-
ation of a single Creator. Plato states that the geometrical
expression of such a self-bounded universe would take a
spherical form:

25. See Bernhard Riemann, Beitrdge zur Theorie der durch die Gauss’sche
Riehe . . .; Theorie der Abel’schen Functionen; Uber die Flache vom kle-
insten Inhalt bei gegebener Begrenzung, in Riemann’s Mathematische
Werke (Leipzig, 1892).
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FIGURE 10
Transcendental Topologies

Simple Transcendental

Elliptical Transcendental

Hyper-Elliptical Transcendental

Now for that living creature which is designed to
embrace within itself all living creatures the fitting
shape will be that which comprises within itself all the
shapes there are; wherefore He wrought it into a round,
in the shape of a sphere, equidistant in all directions
from the center to extremities, which of all shapes is
the most perfect and the most self-similar, since He
deemed that the similar is infinitely fairer than the dis-
similar. And on the outside round about, it was all
made smooth with great exactness, and that for many
reasons.

Riemann reaffirmed this notion of a finite, self-bounded
universe in his habilitation dissertation, except from the
higher standpoint of his notion of a multiply-extended mani-
fold:

The unlimitedness of space has therefore a greater
certainty, empirically, than any experience of the exter-
nal. From this, however, follows in no wise its infinite-
ness, but on the contrary space would necessarily be
finite, if one assumes that bodies are independent of sit-
uation and so ascribes to space a constant measure of
curvature, provided this measure of curvature had any
positive value however small. If one were to prolong the
elements of direction, that lie in any element of surface,
into shortest lines (geodetics), one would obtain an
unlimited surface with constant positive measure of cur-
vature, consequently a surface which would take on, in
a triply extended manifold, the form of a spherical sur-
face, and would therefore be finite.

Plato emphasized that the topological characteristic of a

self-bounded universe also determines a characteristic which
modern science would identify as “quantization.” This is
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expressed, from Plato’s perspective, by the uniqueness of the
five regular Platonic and semi-regular Archimedean solids, as
the unique divisions of the spherical surface.? Further
progress was made in this area by the investigations of Luca
Pacioli and Leonardo da Vinci, particularly the latter’s empha-
sis on the significance into these matters for the distinction
between the abiotic and biotic domains. Significant new
advances to this understanding were added by Kepler’s dis-
covery of a new form of regular solid, the so-called Kepler-
Poinsot stellated solids, and Napier’s contemporaneous dis-
covery of the pentagramma mirificum. With the crystallo-
graphic studies reported in his “The Six-Cornered Snowflake”
paper, Kepler extended this notion into the domain of triply-
extended manifolds, as later indicated by Riemann in the
above-cited section of his habilitation dissertation.

But from Archytas’ construction for the doubling of the
cube, to Kepler’s determination of the elliptical nature of the
planetary orbits, the experimental evidence indicated that
physical action was bounded by a higher form of action than
that expressed by these concepts of spherical action.

The solution to this paradox began to come more fully to
light with such discoveries as Gauss’s renewed look at the
regular and semi-regular solids from the standpoint of the
general principles of curvature, reviewed above; his discov-
ery of the connection of Napier’s pentagramma mirificum to
elliptical functions; his work on the significance of the arith-
metic-geometric mean; and the implications of his insights
into the division of the circle, the ellipse, and biquadratic
residues.

These discoveries presaged Riemann’s insight into the
deeper nature of topological effects, which he developed in his
study of minimal surfaces, Abelian, and hypergeometric func-

26. See Hal Vaughn, “Archimedean Polyhedra and the Boundary: The
Missing Link,” 21st Century Science & Technology, Summer 2005.
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FIGURE 11
Dirichlet’s Principle

tions.”” In these studies, Riemann developed a concept of a
higher notion of self-boundedness, which was expressed by
the succession of relatively self-bounded manifolds associated
with the Riemann surfaces generated with respect to the
extended class of transcendental functions known as Abelian
functions. Riemann showed that each species of transcenden-
tal is associated with an increasing density of singularities,
which is expressed in the corresponding Riemann surface by a
change in their topological characteristics. (See Figure 10.) It
is this Riemannian notion of self-boundedness which is the rel-
evant approach to modern physical science.

The essential characteristic of these Riemann surfaces,
Riemann insisted, is their expression of what he called
“Dirichlet’s Principle,”?® a physical principle he adopted from
his teacher, Lejeune Dirichlet, whose lectures on Gauss’s the-
ory of potential, Riemann had attended at the University of
Berlin. In these studies, Gauss and Dirichlet had generalized
Leibniz’s initial work on dynamics, through the study of grav-
ity, magnetism, and electricity. Like Leibniz, Gauss and
Dirichlet emphasized that the specific characteristics of a
physical action are the effect of the least-action properties,
“potential,” of the physical principles governing that action.
Gauss defined as the “potential function,” the function that
expresses the characteristic curvature expressed by these least-
action properties. In other words, physical principles such as
gravity, magnetism, and electricity establish an anti-Euclidean
manifold, whose nature can be expressed by the general prin-
ciples of curvature that Gauss had developed. In the lectures
which Riemann attended, Dirichlet emphasized that this
potential function was expressed by a set of harmonic func-

27. See Riemann, op. cit.; Bruce Director, Riemann for Anti-Dummies, Parts
52,54, 61, 64.

28. See LaRouche, “Vernadsky and Dirichlet’s Principle,” EIR, June 3, 2005;
and Bruce Director, “Bernhard Riemann’s Dirichlet’s Principle,” Riemann
for Anti-Dummies, Part 58, www.wlym.com.
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tions—i.e., functions whose rate of change of curvature is
equal in magnitude and perpendicular in direction—and that
such harmonic functions necessarily expressed the least-action
properties of the potential.

Further, Gauss and Dirichlet recognized that the specific
characteristics of a potential function were determined by the
conditions at the boundary of action. For example, the surface
of a magnet or of the Earth, in the case of magnetism or grav-
ity, or the conditions at the boundary of a heat-conducting
body, as in the example developed by Riemann cited above.
From this, Dirichlet showed that the characteristics of the
potential function throughout the manifold could be specified
by the boundary conditions, and changed when those condi-
tions changed. (See Figure 11.)

Riemann went still further. He recognized that Dirichlet’s
principle expresses a unique characteristic of functions of a
complex variable. When such functions are represented by
Riemann’s surfaces, Dirichlet’s principle is extended to
include physical manifolds with an increasing density of sin-
gularities, as Riemann showed in his work on Abelian and
hypergeometric functions.

This meant that Riemann could demonstrate the relation-
ship between the characteristics of curvature in the infinitesi-
mally small, and the global characteristics of the manifold,
specifically the number, characteristics, and density of singu-
larities.

This can be pedagogically illustrated by example. First,
take the sphere, which is the form of the Riemann surface for
the simple transcendental functions associated with the circu-
lar, hyperbolic, and exponential functions. Each such function
defines a different set of Gaussian parameters from which the
metric relationships are determined. However, the metric rela-
tions hold only for local situations. For example, there is only
one geodesic between any two points, only if those points are
close to each other. But if they are the poles, there is an infinite
number of geodesics that connect them. Riemann showed that
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FIGURE 12
Conformal Gauss Maps

connected manifolds cannot, in general,
be conformally mapped to each other.
This means that the manifold of doubly-
connected manifolds has, in a sense, a
greater degree of “quantization,” as this
concept was explored by Gauss in his
investigation of the arithmetic-geomet-
ric mean.?? But, as will become clear
below, this change in topology is also

associated with a fundamental change in

the global nature of the curvature of the

manifold.

This change becomes clear when
Gauss’s concept of curvature is combined
with the notion of the Riemann surfaces,
as Riemann did in his study of minimal

surfaces. Minimal surfaces, such as the
catenoid, express a physical characteristic

FIGURE 13
Gauss Maps of Area

of least action. This characteristic is
expressed by the fact that the mean cur-
vature of a minimal surface is every-
where constant. Riemann showed that the
Gauss maps of minimal surfaces are con-
formal to the original surface. (See
Figure 12.) Since his surfaces generated
from complex functions, reflecting the
harmonic characteristics of Gauss’s and
Dirichlet’s functions of physical poten-
tial, also have this characteristic they
imply a corresponding Gauss map.

But, an even deeper insight comes to
light when we look further into the topo-
logical connection between the Riemann

on a spherical surface there are inherently always two such
poles. Such surfaces Riemann defined as “simply-connected.”
Further, Riemann showed that this is a characteristic of any
simply-connected surface, and since any simply-connected
surface can be mapped onto the sphere without changing its
harmonic relationships (i.e., conformally), this characteristic is
“topological” (i.e., independent of the particular metric rela-
tions). Nevertheless, it determines the conditions in which
those metric relations exist.

Now look at the case of the torus, which is the surface
associated with the elliptical transcendentals. Here an entire-
ly different situation occurs. As Gauss and Riemann showed,
this species of transcendental expresses a higher power of
physical action than the simple transcendentals. This higher
power is expressed by the increasing density of singularities,
which is expressed in the Riemann surface by a change in the
topological characteristics of the manifold. Riemann denoted
surfaces such as the torus as “doubly-connected.” However,
unlike the case of simply-connected manifolds, doubly-
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surfaces and Gauss maps. Begin this
investigation with a look at the curvature
of simply-connected surfaces. As discussed above, the parts of
these surfaces that are more curved will generate large areas on
the Gauss map, and the parts that are less curved will generate
small areas on the Gauss map. (See Figure 13.) But though the
curvature can vary widely from place to place on the surface,
the total curvature of the surface, that is, the Gauss map of the
entire surface, will be the same for every simply-connected
surface!
This would appear to lead to a devastating conclusion, if we
held to the idea that the form of the universe were simply
spherical. For in such a case, the total curvature of the universe

29. See Carl Gauss, Nachlass zur Theorie Des Arithmetisch-Geometrischen
Mittels und der Modulfunktion, tibersetzt und herausgegeben von Dr.
Harald Geppert (Leipzig: Ostwaldt’s Klassiker der Exakten
Wissenschaften, Akademische Verlagsgesellschaft M.B.H. 1927);
Bruce Director, “Gauss’s Arithmetic-Geometric Mean: A Matter of
Precise Ambiguity,” Riemann for Anti-Dummies, Part 66,
www.wlym.com.
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FIGURE 14

Double Layered Gauss Map

SPHERE

FIGURE 15
Hyper-Elliptical
Transcendental

]

Gauss maps. The outside of the torus
maps to an entire sphere, and the inside
also maps to an entire sphere, except in
the opposite direction. (See Figure 14.)
The boundary circles map to the poles.
Thus, the Gauss map of the torus is itself
a Riemann surface with a total curvature
of zero!

This provides us with a better concep-
tion of zero curvature than the idea of
flatness. Instead of thinking of a meas-
urement of zero curvature as Euclidean
flatness, we can think of zero curvature as

would be fixed. Thus, the local curvature could change, but no
such changes could affect the overall curvature of the universe
itself. This idea corresponds to the Aristotelean dogma that,
though change can occur in the small, in the overall scheme of
the universe, no fundamental change is possible. This view, of
course, is contradicted by the experimental evidence of physi-
cal science and the history of man, whose discoveries and
applications of universal principles have brought about
changes that can only be expressed as a change in the total cur-
vature of the universe.

But, fortunately, as Riemann showed, our minds are not
limited to simply-connected manifolds. On the basis of his dis-
coveries, we can form a concept more appropriate to the anti-
entropic nature of the real universe: a succession of manifolds
of increasing connectivity associated with an increasing
change in the total curvature of the manifold.

Now look at the Gauss map for the torus, as an example
of a doubly-extended manifold. The outside of the torus is
positively curved and the inside negatively curved. The cir-
cles that form the boundary of the two regions have zero cur-
vature. Thus, the curvature of the torus is more complex than
a simply-connected surface. This becomes clear from the
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the total effect of a manifold with equal
amounts of positive and negative curvature. The local curva-
ture in such a manifold can be either negative or positive, as
is also possible for a simply-connected surface. But the sig-
nificance of the local curvature in each manifold is entirely
different.

From this comparison of the simply-connected surface
with a total curvature equal to one spherical surface, and
the torus with a total curvature of zero, it might appear that
we are not heading in the direction of a concept of a uni-
verse with a possibility of an ever-changing curvature. But
this appearance is remedied when we look at the Gauss
maps for a triply-connected manifold, associated with the
next higher species of transcendental, the hyper-elliptical.
(See Figure 15.) Such a manifold has one positively curved
region and two negatively curved ones. Thus, the Gauss
map will be one positive spherical surface and two negative
ones, for a net total curvature of —1 spherical surface. If we
now think of the entire manifold of Riemann’s surfaces, we
see a manifold of manifolds of increasing density of singu-
larities, and with a discontinuously increasingly negative
total curvature. Such discontinuities between changes in
total curvature also correspond to a change resulting from
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the introduction of an entirely new principle acting on the
manifold. This change produces a corresponding change in
the quantization of the manifold. This idea, combined with
Riemann’s idea of n-tply extended magnitudes, tensors, is
the basic concept necessary to approach an investigation of
the physical economy.

That, however, requires the development of a still higher
form of tensor.

Riemannian Tensors in Economics: A
Preliminary Approach

With everything stated above in mind, a sketch of a pre-
liminary approach to the construction of Riemannian-type
tensor-like magnitudes appropriate to expressing physical eco-
nomic processes can be attempted. The principles on which
this is based have been developed thoroughly by LaRouche in
many locations, most relevantly, his recent “Dynamics &
Economy” (EIR, Aug. 25, 2006).

Such multiply-extended magnitudes must express the inter-
action of abiotic, biotic, and cognitive principles, as a dynam-
ic of the social interaction among human beings, that is itself
acting on the abiotic, biotic, and cognitive domains. This
dynamic cannot be treated as a fixed, even non-linear, interac-
tion, but as a dynamic that itself is changing due to the willful
action of the creative powers of man. Thus, the physical-
economic manifold of action must be considered as the mani-
fold of the increasing potential to produce ideas.

As such, no form of an array or matrix of data and functions
(even algebraically non-linear ones), such as are indicated by
the formal mathematical treatment of tensors, is adequate.
Rather, these physical-economic tensor-like quantities are bet-
ter expressed by the form of animations specified by
LaRouche.

For example, the principle of universal gravitation cannot
be expressed as an array of mathematical relations, either in
the form modern science textbooks display as “Kepler’s
laws,” or, more falsely, as a consequence of the degenerate
form of Newton’s inverse square formulation. Any truthful
expression of the principle of universal gravitation must
express that principle as a discovery acting to change the
dynamic of the universe. What must be taken into account, is
that gravitation was acting as a physical principle in and on
the universe prior to Kepler’s discovery and elaboration of
that principle. But with Kepler's discovery and the propaga-
tion of that discovery through succeeding generations, the
power of the principle of gravitation changed, because it
could now act on the universe from the higher-powered
domain of human cognitive interaction, which, retrospective-
ly, redefined the undiscovered principle of universal gravita-
tion as containing the unrealized potential to produce the
intended effect of its discovery.

This type of change should be expressed in the new
tensor-like magnitudes as a discontinuous change in the
total characteristic curvature of the manifold of physical
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economy, of the type associated with Riemann’s treatment
of such a change in power with respect to the Abelian
transcendentals.

This change in total curvature is associated with a change
in the infinitesimal, or local curvature of the manifold of
physical economic processes. To establish a notion of local
curvature requires a complete and total rejection of any
notions of Euclidean-type absolute time. Events that are
widely separated by one measure of time, are, nevertheless,
simultaneous, with respect to another. For example, the con-
flict in ancient Athens between Socrates and the Sophists is
separated from events today by more than two thousand rev-
olutions of the Earth around the Sun. Nevertheless, the
effects of these events are acting in the universe today as
efficiently as then. Similarly, intended events that are yet to
occur, such as the successful establishment of human habita-
tion of Mars, have an immediate effect on the conduct of
human activity on Earth today. Consequently, a conception
of physical economic local curvature must consider actions
as simultaneously, both widely separated and virtually
instantaneous.°

The above-indicated role of human cognition in the devel-
opment of the universe is expressed by man’s increasing
power in and over the abiotic, biotic, and cognitive domains,
through progress in science and art. Thus, the development of
the universe as a whole is the effect of the increasing potential
of the creative powers of man. Consequently, physical eco-
nomic progress can be expressed by that increasing potential
to generate creative ideas.

However, such ideas are not generated in the universe as a
whole, but by the dynamic relationship of the universe to the
sovereign, willful, creative powers of the individual human
mind. This “local action” affects, and is affected by, the total
creative potential of mankind, and potentially, the universe as
a whole. From the standpoint of the physical economy, this is
expressed by the physical economic relationship of the house-
hold to the economy as a whole.

The primary physical economic activity of a household is
the ability to produce, the potential to produce, creative ideas
from among the members of that household. That potential is
a function of the physical economic conditions—e.g., hard
infrastructure (such as water, power, transportation), level of
technology, and soft infrastructure (such as education, culture,
and health) available to the members of that household,
through the action of universal principles acting on this “local”
moment from throughout space-time.

Thus, the tensor-like quantity associated with the measure
of local physical economic curvature must express the inter-
section, at a point in the physical economic manifold, of the

30. The paradigm for such a notion of time is Kepler’s notion of time with
respect to planetary orbits. The planet’s action at any instant is only known
as its relationship to the whole orbit. Kepler’s principle of equal areas
expresses this notion of time.
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dynamically interacting curvatures of the physical and cultur-
al principles, acting from throughout time, that are affecting,
and being affected by, the creative powers of the individuals of
that household.

It may seem that this tensor-like quantity contains so many
components that its actual form is virtually impossible to
express. However, this is true only if a formal mathematical
expression is sought. Gauss and Riemann both showed that
their functions of curvature could take extremely complicated
forms when expressed in formulas. Consequently, they sought,
and found, means to express the essential characteristics in
physical-geometric garb. The equivalent means for these phys-
ical economic tensor-like quantities are the physical economic
animations designed by LaRouche.

In addition to curvature, the metric relations of the physical
economy also can be expressed by tensor-like magnitudes.
This is also best illustrated by example.

Look at the level of transportation available to the
households of the U.S.A., which defines a certain metric
relationship between the households and the economy as a
whole, expressed as a geodesic in physical economic space-
time. This can be initially expressed by the relationship
among the various forms of water, rail, road, air, pedestri-
an, bicycle, etc., transport accessible to that household,
which defines a least-action pathway for that relationship.
But the economic significance of these forms of transport is
relative to their relationship to the organization of the econ-
omy as a whole.

To express this, one must look, as LaRouche suggested
in his Dec. 15, 2005 “Rebuilding the U.S.A.: Travel Among
Cities” (EIR, Dec. 30, 2005), at the development of the
transportation of North America from the early 17th
Century onward. The physical geography of North America
in the early 17th Century can be characterized by a certain
level of connectivity associated with bays, inlets, and river
systems of the eastern coast, the Appalachian mountain
range, the Great Lakes, and the Ohio and Mississippi-
Missouri river systems. This level of connectivity is the
result of the bio-geological action from the beginning of the
last Ice Age.

This physical economic geography implies a potential con-
tinental connectivity that can only be realized by the interven-
tion of man. The realization of that potential began with the
development of water and road systems within the eastern
regions, followed by the initial attempts to construct the sys-
tems to connect the costal region to the continental interior,
and to connect the river systems of the Ohio and Mississippi
river valleys together, and to the Great Lakes.

The possibility to do this depended on the application of
man’s creative powers to transform the bio-geological activity,
as typified by the construction of the Saugus Iron Works in the
17th-Century Massachusetts Bay Colony. This integrated
manufacturing facility utilized the water and biological capac-
ity of the region to transform bog iron into tools, nails, and
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other useful items. The creation and application of such “abi-
otic” products of biological and cognitive action, further trans-
formed the bio-geological characteristics of the area. This
transformation was the result of, and integral to, the process
which created a new social organization of man: the American
republic, the which made possible and necessitated an increase
in the physical-economic connectivity of the continent. This
increase in connectivity, effected through this interaction
among abiotic, biotic, and cognitive processes, produced a
corresponding increase in the potential to increase the physical
economic connectivity.

The introduction of rail changed this potential dramatically,
not as a substitute for water and road, but as a transformation
of their relationship to a higher form of physical economic
connectivity. The subsequent completion of the transcontinen-
tal railroad, the development of a continental system of high-
ways and air transport, further increased the physical econom-
ic activity. This increase of connectivity must be seen in light
of corresponding increases in power generation, locomotion,
etc.

Further, this increase in connectivity must also be seen with
respect to the intention of which it is an effect. For example,
the development of the interstate highway system as a supple-
ment to a national rail, water, and air transportation system,
linking concentrated small, medium, and large agro-industrial
centers created by President Franklin D. Roosevelt’s econom-
ic mobilization during the middle of the last century, defines a
certain qualitative increase of economic connectivity. But, as
an auxiliary of an intended run-up in real-estate values, it
becomes what it has become: a virtual coast-to-coast parking
lot, on which the majority of Americans waste billions of man-
hours per day, thus, decreasing the physical economic connec-
tivity of the continent.

Still further, when this continental transportation system is
seen as part of a global network whose intended effect is to
increase the physical economic connectivity of mankind, for
the purpose of the development of the continents of the Earth,
and integrated into the development of a system of transport
linking these parts of the Earth to nearby space, the Moon,
Mars, and beyond, an even higher quality of physical eco-
nomic connectivity is realized, with the corresponding effect
on the physical economic potential of the individual members
of society to produce creative ideas.

These changes are reflected as a corresponding change in
the metric relations of physical economic space and time
expressed by a change in the geodesics that express the paths
of least action in the physical economy. This change defines
the types of characteristics that must be expressed by a metric
tensor of physical economic space-time.

The only appropriate means for expressing such relation-
ships are tensor-like magnitudes that supersede the tensors of
the Riemannian type, the development of which, with the cor-
responding implications for the physical and biological sci-
ences, stands at the forefront of science today.
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