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Feb. 3—Regular readers 
of EIR have seen Lyndon 
LaRouche’s references to 
the complex notion de-
veloped by Albert Ein-
stein, that we live in a uni-
verse which is “finite but 
unbounded.” Such a uni-
verse, LaRouche has as-
serted, is ruled by univer-
sal physical principles 
which allow for efficient, 
least action pathways for 
the evolution of anti-en-
tropic phenomena, as we 
see in biological sys-
tems, and in human creative mentation. Such an 
anti-entropic universal principle is inherent even 
within the abiotic, supposedly dead, physical uni-
verse at large.

But how would a universe defined as finite but un-
bounded, be significant for such potentials?

As the first step in investigating the origin of 
Einstein’s concept, and understanding the concept’s 
relationship to the theories of Max Planck and 
Lyndon LaRouche, we must, as background, look to 
the influence on modern science of the great his-
torical figures, Gottfried Wilhelm Leibniz, of the 
17th century, and Bernhard Riemann, of the 19th 
century.

Leibnizians, First and Always
Einstein, Planck, and LaRouche were steeped in 

Leibniz, and the Leibnizian method of hypothesis 
making, from an early age: Einstein and Planck, be-
cause they were schooled in the German philosophi-
cal-scientific tradition of their homeland; LaRouche, 
because, at age 12, his paternal grandmother had given 
him a collection of philosophical tracts that included 
Leibniz. LaRouche recalls, “This encounter with 
Leibniz was the most important intellectual experi-

ence of my childhood and youth.”1

LaRouche first studied Leibniz’s philosophical and 
scientific works; then, years later, upon discovering 
Leibniz’s 1671 essay, “Society and Economy,” La-
Rouche became devoted to elaborating and further de-
veloping a Leibnizian notion of physical economy. La-
Rouche says:

The first economic scientist, in the strict modern 

1. Lyndon H. LaRouche, Jr., The Power of Reason: 1988, an Autobiog-
raphy. Executive Intelligence Review, Washington, D.C., 1987. On 
pages 16-17 LaRouche states:

“My attitude toward ideas was one fairly described as ‘Socratic.’ . . . 
This emerged clearly beginning my 12th year.

“I had begun poking into the writings of philosophers. After a few 
readings, I decided to begin all over again, this time in chronological 
order. I began with selections published in the Harvard Classics, a set 
given to me by my grandmother Ella LaRouche that year, and supple-
mented that with other texts. The list ran, Francis Bacon, Thomas 
Hobbes, René Descartes, John Locke, Gottfried Leibniz, David Hume, 
Berkeley, Jean-Jacques Rousseau, and Immanuel Kant.

“Bacon, Hobbes, Locke, Hume, Berkeley, and Rousseau I hated. 
Leibniz moved me with a sense like that of coming home after a long 
homesickness. I read the Monadology, Theodicy, and the Clarke-Leibniz 
correspondence again and again, going on to writers later in my series, 
and back to Leibniz again. By fourteen, I was an avowed student of Leib-
niz.”

The ‘Finite but Unbounded’ Universe 
of Einstein, Planck, and LaRouche
by Judy Hodgkiss
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Telescope.
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sense of science, was Gottfried Leib-
niz, who also was the first to produce a 
differential calculus, and also more branches of 
modern science than most university graduates 
could list from memory of their names. . . .2

Albert Einstein saw in Leibniz’s works a prescient 
notion of relativity, particularly in Leibniz’s arguments 
against Isaac Newton’s notions of absolute space. Ein-
stein wrote on the subject for an article  in Scientific 
American in 1950:

[My theory of relativity] overcomes a deficiency 
in the foundations of mechanics which had al-
ready been noticed by Newton and was criticized 
by Leibniz and, two centuries later, by Ernst 
Mach: Inertia resists acceleration, but accelera-
tion relative to what? Within the frame of classi-
cal mechanics the only answer is: Inertia resists 
acceleration relative to space. This is a physical 
property of space—space acts on objects, but ob-
jects do not act on space. Such is probably the 
deeper meaning of Newton’s assertion spatium 
est absolutum (space is absolute). But the idea 
disturbed some, in particular Leibniz, who did 
not ascribe an independent existence to space but 
considered it merely a property of “things” (con-
tiguity of physical objects).3

2. Lyndon H. LaRouche, Jr., So, You Wish to Learn All About Econom-
ics?: A Text on Elementary Mathematical Economics, EIR News Ser-
vice, Inc., Washington, D.C., 1995. The book is available online.
3. Albert Einstein, “On the Generalized Theory of Gravitation,” Scien-
tific American, Vol. 182, No. 4, April 1950. Pp. 13-17. The article is 
available online.

In his theory of the quantum, 
Max Planck relied heavily upon 
Leibniz’s notion of a principle 
of “least action.” Most today 
refer to Planck’s theory as in-
volving the “quantum of 
energy,” or the “quantum of 
light,” but Planck himself said 
his theory was based on the idea 
of the “quantum of action.” In a 
1908 lecture titled, “The Princi-
ple of Least Action,” Planck 
says:

Among the more or less 
general laws, the discovery 
of which characterize the 
development of physical 

science during the last century, the principle of 
Least Action is at present certainly one which 
by its form and comprehensiveness, may be 
said to have approached most closely to the 
ideal aim of theoretical inquiry.4

Planck and Einstein were among the dying breed of 
scientists in the 20th century who dared to conjure Leib-
niz’s name, and to defend him against his many detrac-
tors. In his lecture, Planck, contrary to the contemporary 
vogue of crediting the development of least action 
theory to the perverse Frenchman Pierre Moreau Mau-
pertuis, instead reveals the way that Maupertuis bowd-
lerized Leibniz’s ideas, and how his attempts to claim 
priority over Leibniz backfired on him (at least, at that 
time,—Maupertuis was later rehabilitated). Planck says:

[Of those who helped to develop the idea of least 
action], the first was Leibniz; indeed, he was the 
chief, according to a letter dated 1707, the origi-
nal of which has been lost. . . . Then came Mau-
pertuis and [Leonhard] Euler. . . . Maupertuis re-
peatedly announced in different forms, his 
principle of Mitwelt, and zealously defended it 
against what were often authoritative criticisms. 
The zeal with which he did this rose at times to 
fanaticism, and was quite disproportionate to the 

4. Max Planck, “The Principle of Least Action,” in his A Survey of 
Physical Theory (formerly titled A Survey of Physics), R. Jones and D. 
H. Williams, transl. Dover Publications, New York, 1960. A reprint is 
available online.
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scientific value of his enuncia-
tions. . . . This is especially 
shown in the passionate at-
tempts he made to dispute 
Leibniz’s letter when it was 
produced by Professor Samuel 
König in 1751—attempts 
which almost led him to abuse 
the high position he occupied 
[as president of the Berlin 
Academy of Sciences]. 
Human weakness and vanity 
have hardly ever been more 
severely punished than in this 
case. . . .

One of the most intriguing ob-
servations in Planck’s lecture is 
his statement that Leibniz’s least 
action theory reminds him of Leibniz’s other theory, the 
one about the “best of all possible worlds.” Planck says:

In this connection mention may certainly be 
made of Leibniz’s theorem, which sets forth fun-
damentally that of all worlds that may be created, 
the actual world is that which contains, besides 
the unavoidable evil, the maximum good. This 
theorem is none other than a variational princi-
ple, and is, indeed, of the same form as the later 
principle of least action.

Planck, himself, does not elaborate the deeper prin-
ciples inherent in that “best of all worlds” theorem—in 
fact, he simplifies the idea quite a bit in order to fit his 
immediate example—but the very fact that Planck 
opened the door to such a multifaceted metaphor in the 
middle of his scientific treatise, set the empiricists 
howling.5

5. See Wolfgang Yourgrau and Stanley Mandelstam’s Variational Prin-
ciples in Dynamics and Quantum Theory, Saunders, Philadelphia, 1968, 
a book which begins with a dedication to Planck and ends with an ava-
lanche of attacks on him, including the following:

“Among the staunchest protagonists of a metaphysical content to the 
action principle was Planck, who, with great philosophic poise, sought 
first to clarify and then to extol its rank in science. . . . In striking contrast 
to his otherwise calm and balanced judgment, he dubbed the principle 
of least action the ‘most comprehensive of all physical laws which gov-
erns equally mechanics and electrodynamics.’ . . .

“Whilst, in his appreciation of the unique place which the principle 
of least action holds in physics, Planck’s views are steadfast and consis-

Leibniz’s metaphysical theo-
rems open the way for questions 
about free will, the goodness of 
God, the arbitrariness of natural di-
sasters, etc.: All of which, in turn—
as we will see—is connected to the 
question of an anti-entropic uni-
verse that is finite, but unbounded.

When Leibniz poses the idea of 
the best of all possible worlds, one 
is compelled to ask: Where is there 
room for human free will in a world 
that is destined to be the “best,” 
anyway? What can be better than 
“best”? Is it possible that some-
thing “bad” in the world, can actu-
ally, through the intervention of 
human will, be turned into some-
thing that makes the world “better” 

than that which was “best” before?
These are questions similar to those that arise in 

Leibniz’s theory of the possibility of “higher perfec-
tion.” Leibniz argues that each species of being strives 
toward the perfection defined by its ideal form; but, in 
addition, it is possible that the principles that define the 
perfect form, are themselves not fixed, but develop to-
wards a more perfect form.

Such is the realm of ideas that exercise the mind in 
a way that allows us to grasp analogous concepts within 
the realm of the physical sciences—concepts such as 
series of higher orders of infinity, or the appearance of 

tent, his advocacy of a teleological interpretation of this law is charac-
terized by a certain measure of contradiction . . . Such a principle, he 
asserts, suggests to a person free from prejudice the presence of a ratio-
nal, purposive will governing nature, for a physical system must choose 
that route which directs it most easily towards its objective. . . .

“An outstanding example is the extraordinary manner in which 
Planck comprehends as a variational principle Leibniz’s maxim that our 
world is the best of all possible worlds! . . .

“Planck pursued this train of thought with more fervour than did any 
other physicist. . . . Planck, when dealing with the division of phase 
space, had intimated that the action was associated with whole multiples 
of h, which he designated the ‘elementary quantum of action’ . . . Planck 
posed the question, ‘Can it be that the astonishing simplicity of this rela-
tion rests once again upon chance? It is becoming more and more diffi-
cult to believe this. On the contrary, the impression forces itself upon us 
with elemental power that Leibniz’s principle of least action can afford 
the key to a deeper understanding of the quantum of action.’

“Planck’s arguments concerning this problem are steeped in consid-
erable metaphysical hypothesis to which it is difficult for the critical 
scientific reader to give assent.”

Gottfried Wilhelm Leibniz



February 1, 2019  EIR LaRouche’s Economics  13

infinites which are only infinities because we are mea-
suring a higher order manifold with a ruler which be-
longs to a lower order manifold (to use Riemann’s lan-
guage). These are the kinds of concepts which we must 
comprehend in order to understand Einstein’s descrip-
tion of his “finite but unbounded” universe.

Riemann and Higher Order Manifolds
This leads us to a discussion of Riemannian geom-

etry, which provided a form for the generalization of 
relativity theory.

The best introduction to Riemannian geometry, 
though, is through LaRouche’s description of his first 
contact with Riemann’s works and how he applied Rie-
mann’s geometry to what LaRouche calls the “King and 
Queen” of the sciences:6 physical economy. In his autobi-
ography, The Power of Reason: 1988, LaRouche gives a 
history of the development of the LaRouche-Riemann 
economic model:

During the postwar period, U.S. national income 

6. LaRouche, op. cit., calls physical economy the King and Queen of 
the sciences, because all of the other sciences are subsumed by the his-
tory and future development of economic systems—in the sense that, on 
the one hand, the present state of such systems depends on creative 
achievements in the various branches of science in the past, while, on 
the other hand, the future state of such systems depends on the con-
scious creation of conditions which foster creative achievement in those 
branches (and the creation of new branches), into the future. Physical 
economics seeks not to achieve any particular, individual revolutionary 
discovery, but to promote a succession of such discoveries.

accounting was reorganized under the so-called 
Gross National Product system. This system, 
which is intrinsically incompetent as a way of 
measuring economic performance, took over re-
porting functions of government, and shaped the 
practice of the economics profession. During the 
1940s and 1950s, an absurd doctrine concocted 
by John Neumann, “linear systems analysis,” 
became the basis for what was known as “econo-
metrics.” This concoction then became the basis 
for most applications of accounting and econom-
ics practice to computer systems. . . .

[During that same period,] I had the good 
fortune to have made two discoveries which are, 
combined, a major contribution to economic sci-
ence.

Since Leibniz, we have known the general 
nature of the cause-effect relationship between 
the introduction of an advancement in technology 
and a resulting increase in the productive powers 
of labor. Improvements in technology enable us 
to reduce the amount of labor consumed in pro-
ducing a good. It was not known, until my work 
of the early 1950s, how to show that this cause-
effect connection itself could be measured. . . .

We distinguish today, between those ad-
vances in technology which represent the intro-
duction of a ‘new scientific principle’, and those 
which are merely a more advanced expression of 
a scientific principle already well established. It 

Least action pathways are not always straight lines. A brachistochrone and a pencil in water, illustrate the least action curve of a 
ball rolling down a track, and the least action refractive angle for light going from air to water.
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is the introduction of a new sci-
entific principle which repre-
sents, at once, both a discon-
tinuity in scientific thinking, 
and which generates a gener-
alized discontinuity in the 
course of technological-eco-
nomic growth.

In this way I formulated the 
first part of my two-step dis-
covery in economic science. 
On the one side, the character-
istic features of creative mental 
activity are negentropic and 
therefore implicitly so measur-
able. Advances in technology, 
as mental conceptions, could 
be measured implicitly in this 
way. The introduction of these 
advances in mental concep-
tions, to production, causes 
economic growth, the which is 
also negentropic in form, and 
measurable. So, measurable negentropy in the 
first instance, causes measurable negentropy in 
the second instance. By reducing this causal 
connection to a single functional expression, the 
causal relationship between technological prog-
ress and economic growth is measurable, and 
this in a way which admits of predicting the ben-
efits of adopting a specific form of technological 
progress.

This was the first part of my discovery.
The problem posed by the discovery, was the 

question: where to find the mathematics appro-
priate to such a function?

At first glance, I recognized that Georg Can-
tor’s notion of transfinite ordering touched di-
rectly upon the kind of mathematics needed. I 
spent the greater part of every possible moment, 
over approximately a year, fighting my way 
through Cantor’s work. I had stabbed at Rie-
mann’s work years earlier, by way of [Luther] 
Eisenhart’s text. Working through Cantor, I saw 
Riemann in the right way for the first time. I read 
Riemann’s famous 1854-published inaugural dis-
sertation, “On the Hypotheses Which Underlie 
Geometry,” with what can be described only as an 
empyreal quality of excitement. From that 

moment, everything I had 
sought began to fall into place.

Let us look at the beginning of 
the above-mentioned inaugural 
dissertation, given before the 
mathematics faculty at the Univer-
sity of Göttingen, where we find 
Riemann asserting—to the shock 
of the assembled professors (ex-
cepting Riemann’s mentor, Carl 
Gauss, who was also present, but 
not at all shocked)—that the fun-
damental axioms underlying Eu-
clid’s geometry, accepted as given 
for the past millennium, are in fact 
open to question.

Riemann then proceeds to de-
velop possible geometries which 
are not based on the Euclidean as-
sumptions of a flat universe ex-
tending linearly into infinity. He 
investigates the possibilities of 

curved space, and the varieties of discrete and continu-
ous manifolds which describe physical phenomena of 
either type within such a space; and, also, how an indi-
vidual manifold might transform from one order of 
connectedness to a higher order.

At the end of the dissertation, Riemann again shocks 
his audience of mathematics professors by announcing 
that it was not presently possible to come to conclu-
sions regarding his proposed geometry, because “this 
[discussion] leads us into the domain of another sci-
ence, that of physics, into which the object of today’s 
proceedings does not allow us to enter.”

The domain of mathematics is, indeed, a domain of 
lower order, and should be regarded as in service to a 
higher domain, that of physics.

Sixty years after Riemann’s presentation, it was the 
physics of Albert Einstein that answered Riemann’s 
challenge. Einstein’s biographer, and personal assistant 
in Berlin in 1928-1929, Cornelius Lánczos, wrote of 
the Einstein/Riemann relationship:

Riemann saw further than his contemporaries. . . . 
[Riemann] points out that some day the physicist of the 
future may see himself compelled to go beyond the 
framework of Newtonian concepts. His work has purely 
the purpose of clearing the way to a broader approach 
so that, when that time comes, science should not be 
hamstrung by traditional prejudices. No words could 

Bernhard Riemann
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have expressed more adequately the historical destiny 
which was in store for Einstein.

Riemann’s prophetic utterance was spoken at the 
end of his “inaugural address,” given on the occasion of 
his election to the mathematical faculty of the Univer-
sity of Göttingen (1854). . . . [His advisor], Gauss, found 
the topic, entitled, “On the Hypotheses Which are at the 
Foundation of Geometry,” particularly to his taste. . . .7

Why ‘Finite but Unbounded’?
Einstein discusses the concept of a finite but un-

bounded universe in two locations: in his 1916 book, 
Relativity: The Special & General Theory, in the chapter 
called “The Possibility of a ‘Finite’ and Yet ‘Unbounded’ 
Universe,” in an appendix written in 1935, and in a lec-
ture titled “Geometry and Experience,” given in 1921 at 
the Prussian Academy of Sciences in Berlin.

The first treatment is more limited, and will not be 
discussed here, as it is subsumed by the second. The 
second is highly ironical in nature, and therefore must 
be approached carefully. Also, it is in translation, and, 
as is the case in all translation of highly ironical works, 
such as poetry, it must be approached doubly carefully.

Einstein begins by praising mathematics. But watch 
out—it turns out that this lecture is the place where Ein-
stein states his famous maxim:

As far as the laws of mathematics refer to reality, 

7. Lánczos wrote two biographies of Einstein, Albert Einstein and the 
Cosmic World Order, consisting of six lectures delivered at the Univer-
sity of Michigan in the spring of 1962, Interscience, New York, 1965; 
and The Einstein Decade: 1905-1915, Academic Press, New York, 1974.

they are not certain; and as far as they are certain, 
they do not refer to reality.

Einstein’s next highly ironical assertion is that he 
agrees with “that acute and profound thinker, H. Poin-
caré.” Henri Poincaré was known for his philosophy, 
called “conventionalism,” which says that there is no 
real “truth” in science, only an agreement among scien-
tists as to what will be acceptable and agreed to by con-
vention. It was widely known that Einstein viewed such 
philosophy with disdain.

Einstein says,

If we deny the relation between the body of axi-
omatic Euclidean geometry and the practically-
rigid body of reality, we readily arrive at the fol-
lowing view, which was entertained by that 
acute and profound thinker, Henri Poincaré:—
Euclidean geometry is distinguished above all 
other axiomatic geometries by its simplicity. 
Now since axiomatic geometry by itself con-
tains no assertions as to the reality which can be 
experienced, but can do so only in combination 
with physical laws, it should be possible and rea-
sonable—whatever may be the nature of real-
ity—to retain Euclidean geometry. For when 
contradictions between the theory and experi-
ence manifest themselves, we should rather 
decide to change physical laws than to change 
axiomatic Euclidean geometry. . . .

Einstein then defines how both a “practical” geom-
etry and an “ideal” axiomatic geometry (Euclidean) 
would allow for the following:

We will call that which is enclosed between two 
boundaries, marked upon a practically-rigid 
body, a tract. We imagine two pro-rigid bodies, 
each with a tract marked out on it. These two 
tracts are said to be “equal to one another” if the 
boundaries of the one tract can be brought to co-
incide permanently with the boundaries of the 
other.

We now assume that: If the two tracts are 
found to be equal once, and anywhere, they are 
equal always and everywhere. . . .

This is the ultimate foundation in fact which 
enables us to speak with meaning of the mensu-
ration, in Riemann’s sense of the word, of the 
four-dimensional continuum of space-time. . . .

Courtesy of Charlotte von Conta
Max Planck (right) and violinist Karl Klingler. Planck 
performed with professional musicians throughout his life.

http://www.gutenberg.org/files/5001/5001-h/5001-h.htm
https://www.researchgate.net/publication/260846633_Geometry_and_Experience_1921
https://www.researchgate.net/publication/260846633_Geometry_and_Experience_1921
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The question whether the structure of this 
continuum is Euclidean, or in accordance with 
Riemann’s general scheme, or otherwise, is, ac-
cording to the view [now] being advocated, 
properly speaking a physical question which 
must be answered by experience, and not a ques-
tion of mere convention.

Einstein then proceeds to make several theoretical 
arguments about the nature of the cosmos and whether 
it were possible to make measurements of the average 
spatial density of the matter in universal space (as 
concentrated in the stars), and therefore decide if the 
density falls off as one goes out in some direction to 
infinity. He can come to no conclusion on the ques-
tion. He asserts that were it possible to show that the 
mean density remains the same in all directions, he 
could show that the universe must be finite. But, he 
says, he can offer no solution to the problem, at this 
time.

Then he comes to a most interesting point: Using 
the system of “equal tracts” which he has developed 
earlier, he claims to be able to demonstrate that—in 
spite of the fact that it cannot now be proven whether 
the universe is finite, or not—that a mental image of a 
finite but unbounded universe were possible. Einstein 
says:

This is where the reader’s imagination boggles, 
“Nobody can imagine this thing,” he cries indig-
nantly. “It can be said, but cannot be thought. 
[Sound familiar?] I can represent to myself a 
spherical surface [which is two-dimensional] 
well enough, but nothing analogous to it in three 
dimensions.”

But We Need Three Dimensions
Einstein, first, shows us why a sphere 

is finite but unbounded in two dimen-
sions. He says to imagine the surface of 

a large globe [Figure 1A], and a quantity of small paper 
discs, all of the same size [Figure 1B]. One disc can be 
picked up and placed on the globe’s surface, anywhere, 
and moved around without encountering a boundary or 
limit. The globe’s surface is an unbounded continuum. 

If we stick the paper discs to the globe, with no disc 
overlapping another, the surface of the globe finally be-
comes so full that there is no room for another disc. It is, 
therefore, also a finite continuum.

We now use the globe and the attachable discs, to 
demonstrate the direction we must go for 3-D visualiza-
tion. Set the globe on a plane surface, with one disc, 
which we will call L, attached to the globe. Shine a light 
down from point N at the top of the globe—point N 
being opposite to point S, which is the point of the globe 
resting on the plane. The light will shine through paper 
disc L, throwing a shadow Lʹ onto the plane surface.

Move the L disc around. Its Lʹ shadow moves on the 
plane accordingly. As you move the disc upward on the 
globe towards point N, the disc shadow on the plane 
moves outwards from point S, growing bigger and 
bigger. As the disc approaches N, the shadow moves off 
to infinity, and becomes infinitely great.

But! What appears to be infinite in the Euclidean 
space of the plane surface is actually merely the 
shadow of a real rigid body on a finite surface in Ri-
emannian space.

Now, stick multiple discs to the globe, and look at 
the shadows: If two discs on the globe are touching, 
their shadows on the plane also touch. The shadow-ge-
ometry on the plane agrees with the disc-geometry on 
the globe. You can now see that the plane is finite with 
respect to the disc-shadows, since only a finite number 
of the shadows can find room on the plane, just as only 
a finite number of discs can find room on the globe.

FIGURE 1B
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Someone objects: “I can take a ruler and mea-
sure the shadows and show that they are not rigid 
figures, since they change in size.” Einstein an-
swers: We can imagine the ruler may behave on 
the plane the same way as the disc shadows. Then 
the fact that the disc shadows grow in size has no 
meaning. They live in the same Riemannian uni-
verse as the discs on the globe.

Next, discard the globe and discs, and, instead, 
imagine a point S, somewhere in space, and a 
great number of small spheres, which we will also 
call Lʹ, to point out their analogy with our disc-
shadows. These spheres are not rigid bodies like 
the globe was. Their radius can increase when 
they move away from point S towards infinity. 
Imagine bringing these spheres into contact with 
each other, so that point S is at the center of the 
inner spheres. Then allow all of the spheres to 
move outwards, maintaining contact with their 
surrounding spheres as they are all increasing in 
size in accordance with the same law as applies to 
the increase of the radii of the disc-shadows on the 
plane.

As before, no “ruler” is allowed, that does not have 
the same behavior as our Lʹ spheres. The spheres are, 
therefore, in regard to this Riemannian space, rigid bodies 
within a finite universe that has no physical boundary.

Such a universe is bounded only by the universal 
physical laws which govern its behavior.

What About Einstein in 1935?
The reader with a science background has probably 

been asking all along (maybe even screaming all along): 
“Isn’t all of this irrelevant? Didn’t Edwin Hubble dem-
onstrate that, since spectral lines from distant galaxies 
show a redshift, that can only mean an expansive 
motion of star systems out towards infinity, that we 
have therefore proven that there was a big bang explo-
sion 13.7 billion years ago, and all matter is now entro-
pically dissipating towards heat death? Why talk about 
Einstein’s old ideas of a physically stationary universe 
that might be dominated by anti-entropic principles? In 
fact, isn’t it Einstein’s own Riemannian, nonlinear field 
equations that prove the big bang theory to be true?”

In 1935, Einstein did write that he believed that his 
equations might lead to such a conclusion. He wrote a 
short appendix to his 1920 book, cited above, in which 
he acknowledged that “Hubble’s discovery can, there-
fore, be considered to some extent as a confirmation of 

the theory [that his own field equations might predict an 
expanding universe].”

But Einstein did not care to continue the discussion. 
This was Einstein’s last comment on cosmological 
questions. He went silent on the subject for the final 
twenty years of his life. Also, 1935 was the same year 
that Einstein published the famous EPR paper, “Can 
Quantum-Mechanical Description of Physical Reality 
be Considered Complete?”—on quantum entangle-
ment, which, similarly, was Einstein’s last article cri-
tiquing the Heisenberg-Born version of quantum phys-
ics. He withdrew from that debate, just as he did from 
any further debate on cosmology.

In either case, whether the question of the day con-
cerned the very large, or concerned the very small, Ein-
stein had no further interest in debating the implications 
of mere mathematical formalisms. As he had insisted 
from the very beginning, both his field equations and 
the mathematics that govern quantum mechanics, are 
incomplete, and therefore, nothing conclusive can be 
drawn from them, in themselves. It didn’t matter to him 
if the debaters wanted to “agree” with his “side” of the 
debate, or not—he was fed up with them all.

His private comments on the publication of the EPR 
quantum paper (EPR indicating the names of the  joint 
authors, Einstein, Podolsky, and Rosen) are indicative. 

NASA/ESA/S. Beckwith (STScI)/HUDF Team
An image from the Hubble telescope’s Ultra Deep Field Camera: A 
view of 10,000 galaxies, cutting across billions of light-years.
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That same year, in a June 19 letter to Erwin Schrödinger, 
Einstein wrote:

For reasons of language this [paper] was written 
by Podolsky after several discussions. Still, it 
did not come out as well as I had originally 
wanted; rather, the essential thing was, so to 
speak, smothered by formalism.

Most cosmologists today are so obsessed with the in-
congruities in the formalisms of what they call the Stan-
dard Model (which they blame on Einstein!), that they 
account for those incongruities by making up ideas of 
“dark matter” and “dark energy.” And, on the other side, 
those who count themselves as the critics of the Standard 
Model, are generally only too eager to build their careers 
around anti-Einstein/anti-Riemann theories, such as the 
modern-day promoters of the pro-Euclid/pro-Newton 
hoax known as the Le Sagian theory of gravity.

Quantum physics is in the same mess. The quan-
tum mechanists of today are obsessing about the qual-
ities of so-called “quarks”—those “things” that are 
supposed to be the constituents of elementary parti-
cles. They have even concocted various “flavors” and 
“colors” to describe their quarks, calling them “up-
quarks” and “down-quarks.” Why not throw in some 
“sideways-quarks,” since they are all nothing but 
mathematical constructs anyway? As for those who 
argue for a deterministic approach, rather than the 
Standard Model statistical approach to quantum phys-
ics, unfortunately most often hark back to theories that 
depend on a revival of an ether medium, or the inven-
tion of a so-called “subquantal” realm, where just 
about any flight-of-fancy interactions are possible.

This is not to say that research in all these fields 
should not continue—many interesting things tend to 
pop out here and there. It’s just that, until we change the 
overall environment within which such research takes 
place, any debates on theory are likely to resemble the 
babblings among the inmates of an insane asylum.

Cornelius Lánczos proceeded with the appropriate 
caution, in 1924, when he published the first solutions 
to Einstein’s field equations (in the form later found, 
independently, by Kurt Gödel). He ended his article 
humbly expressing his joy at being able to work on such 
beautiful ideas, and acknowledging that his mathemati-
cal formalisms were only preliminary, and perhaps 
merely ephemeral. It was particularly on the basis of 

this article that Einstein chose Lánczos to be his assis-
tant at Berlin. Lánczos wrote:

Perhaps the here considered cosmology is only a 
considerable simplification, a first rough ap-
proximation to reality. Even then, it seems to me 
that to let ourselves into these possibilities is not 
without interest. After all, we deal here with the 
archetype of a stationary, rotationally symmetric 
world structure as a solution of Einstein’s funda-
mental equations, and, at the same time, with an 
example of the world-wide beauty of the geo-
metrical way of looking at things and of the 
broad outlook that will open up on these paths.8

We close with the following question and answer by 
Lánczos, excerpted from his 1974 biography of Ein-
stein, which demonstrates the wide gulf between the 
Einstein-Lánczos perspective on the one side, and that 
of modern cosmologists on the other:

Q: How about the so-called “cosmologists,” who 
derive their wisdom directly from Einstein?

Lánczos: Yes, “cosmology!” In the last few years 
“cosmology” has obtained the stamp of approval. It is 
now a respectable chapter of physics. Einstein himself 
recognized in 1917 that General Relativity necessarily 
changes our ideas concerning the universe at large. The 
curved geometry of space made a finite universe possi-
ble, which avoids the conceptual difficulties associated 
with an infinitely extended universe of infinite energy 
content. However, the detailed cosmological specula-
tions, which are so popular today, are hardly justifiable, 
as long as we know so little about the role of the “matter 
tensor”—either in the small or in large regions. The real 
strength of the theory has to demonstrate itself first in 
the atomistic region, before we can hope to make pre-
dictions about what the universe is doing in immense 
distances of either space or time. And yet, here are the 
great geniuses of our day, who seem to know precisely, 
what the universe was doing billions of years ago, or 
what it will do billions of years from now.

8. Cornelius Lánczos, Zeitschrift für Physik, 1924, Vol. 21. Translated 
and published in Cornelius Lánczos: Collected Published Papers with 
Commentaries, in 6 volumes, William Davis, ed., North Carolina State 
University, 1998.


