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Summary Autism is a syndrome characterized by impairments in social relatedness and communication, repetitive
behaviors, abnormal movements, and sensory dysfunction. Recent epidemiological studies suggest that autism may
affect 1 in 150 US children. Exposure to mercury can cause immune, sensory, neurological, motor, and behavioral
dysfunctions similar to traits defining or associated with autism, and the similarities extend to neuroanatomy,
neurotransmitters, and biochemistry. Thimerosal, a preservative added to many vaccines, has become a major source
of mercury in children who, within their first two years, may have received a quantity of mercury that exceeds safety
guidelines. A review of medical literature and US government data suggests that: (i) many cases of idiopathic autism
are induced by early mercury exposure from thimerosal; (ii) this type of autism represents an unrecognized mercurial
syndrome; and (iii) genetic and non-genetic factors establish a predisposition whereby thimerosal’s adverse effects
occur only in some children. © 2001 Harcourt Publishers Ltd 
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INTRODUCTION 

Austic spectrum disorder (ASD) is a neurodevelopmental
syndrome with onset prior to age 36 months. Diagnostic
criteria consist of impairments in sociality and communi-
cation plus repetitive and stereotypic behaviors (1). Traits
strongly associated with autism include movement dis-
orders and sensory dysfunctions (2). Although autism
may be apparent soon after birth, most autistic children
experience at least several months, even a year or more of
normal development – followed by regression, defined as
loss of function or failure to progress (2–4). 

The neurotoxicity of mercury (Hg) has long been rec-
ognized (5). Primary data derive from victims of con-
taminated fish ( Japan – Minamata disease) or grain 
(Iraq, Guatemala, Russia); from acrodynia (Pink disease)
induced by Hg in teething powders; and from individual
instances of mercury poisoning (HgP), many occurring in
occupational settings (e.g. Mad Hatter’s disease). Animal
and in vitro studies also provide insights into the 
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mechanisms of Hg toxicity. More recently, the Food and
Drug Administration (FDA) and the American Academy
of Pediatrics (AAP) have determined that the typical
amount of Hg injected into infants and toddlers via 
childhood immunizations has exceeded government
safety guidelines on an individual (6) and cumulative
vaccine basis (7). The mercury in vaccines derives from
thimerosal (TMS), a preservative which is 49.6% ethyl-
mercury (eHg) (7). 

Past cases of HgP have presented with much inter-
individual variation, depending on the dose, type of mer-
cury, method of administration, duration of exposure,
and individual sensitivity. Thus, while commonalities
exist across the various instances of HgP, each set of vari-
ables has given rise to a different disease manifestation
(8–11). It is hypothesized that the regressive form of
autism represents another form of mercury poisoning,
based on a thorough correspondence between autistic
and HgP traits and physiological abnormalities, as well as
on the known exposure to mercury through vaccines.
Furthermore, other phenomena are consistent with a
causal Hg-ASD relationship. These include: (a) symptom
onset shortly after immunization; (b) ASD prevalence
increases corresponding to vaccination increases; (c) sim-
ilar sex ratios of affected individuals; (d) a high heritabil-
ity rate for autism paralleling a genetic predisposition to
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Hg sensitivity at low doses; and (e) parental reports of
autistic children with elevated Hg. 

TRAIT COMPARISON 

ASD manifests a constellation of symptoms with much
inter-individual variation (3,4). A comparison of traits
defining, nearly universal to, or commonly found in
autism with those known to arise from mercury poison-
ing is given in Table 1. The characteristics defining or
strongly associated with autism are also more fully
described. 

Autism has been conceived primarily as a psychiatric
condition; and two of its three diagnostic criteria are
based upon the observable traits of: (a) impairments in
sociality, most commonly social withdrawal or aloofness;
© 2001 Harcourt Publishers Ltd

Table 1 Summary comparison of traits of autism and mercury poisonin

Psychiatric disturbances
Social deficits, shyness, social withdrawal (1,2,130,131; 21,31,45,53,132
Repetitive, perseverative, stereotypic behaviors; obsessive-compulsive t
Depression/depressive traits, mood swings, flat affect; impaired face rec
Anxiety; schizoid tendencies; irrational fears (2,15,16; 21,27,29,31) 
Irritability, aggression, temper tantrums (12,13,43; 18,21,22,25) 
Lacks eye contact; impaired visual fixation (HgP)/problems in joint attent

Speech and language deficits
Loss of speech, delayed language, failure to develop speech (1–3,138,1
Dysarthria; articulation problems (3; 21,25,27,39) 
Speech comprehension deficits (3,4,140; 9,25,34,38) 
Verbalizing and word retrieval problems (HgP); echolalia, word use and 

Sensory abnormalities
Abnormal sensation in mouth and extremities (2,49; 25,28,34,39) 
Sound sensitivity; mild to profound hearing loss (2,47,48; 19,23–25,39,4
Abnormal touch sensations; touch aversion (2,49; 23,24,45,53) 
Over-sensitivity to light; blurred vision (2,50,51; 18,23,31,34,45) 

Motor disorders
Flapping, myoclonal jerks, choreiform movements, circling, rocking, toe w
Deficits in eye-hand coordination; limb apraxia; intention tremors (HgP)/p
25,29,32,38,70,87) 
Abnormal gait and posture, clumsiness and incoordination; difficulties sit
(4,41,42,123; 18,25,31,34,39,45) 

Cognitive impairments
Borderline intelligence, mental retardation – some cases reversible (2,3,
Poor concentration, attention, response inhibition (HgP)/shifting attention
Uneven performance on IQ subtests; verbal IQ higher than performance
Poor short term, verbal, and auditory memory (36,140; 21,29,31,35,38,8
Poor visual and perceptual motor skills; impairment in simple reaction tim
21,29,142) 
Deficits in understanding abstract ideas & symbolism; degeneration of h
(ASD); difficulty carrying out complex commands (3,4,36,153; 9,18,37,57

Unusual behaviors
Self injurious behavior, e.g. head banging (3,154; 11,18,53) 
ADHD traits (2,36,155; 35,70) 
Agitation, unprovoked crying, grimacing, staring spells (3,154; 11,23,37,8
Sleep difficulties (2,156,157; 11,22,31) 

Physical disturbances
Hyper- or hypotonia; abnormal reflexes; decreased muscle strength, esp
(3,42,145,181; 19,27,31,32,39) 
Rashes, dermatitis, eczema, itching (107,146; 22,26,143) 
Diarrhea; abdominal pain/discomfort, constipation, “colitis” (107,147–149
Anorexia; nausea (HgP)/vomiting (ASD); poor appetite (HgP)/restricted d
Lesions of ileum and colon; increased gut permeability (147,150; 57,144
and (b) a variety of perseverative or stereotypic behaviors
and the need for sameness, which strongly resemble
obsessive–compulsive tendencies. Differential diagnosis
may include childhood schizophrenia, depression, 
obsessive–compulsive disorder (OCD), anxiety disorder,
and other neuroses. Related behaviors commonly found
in ASD individuals are irrational fears, poor eye contact,
aggressive behaviors, temper tantrums, irritability, and
inexplicable changes in mood (1,2,12–17). Mercury poi-
soning, when undetected, is often initially diagnosed as a
psychiatric disorder (18). Commonly occurring symptoms
include: (a) ‘extreme shyness’, indifference to others,
active avoidance of others, or ‘a desire to be alone’; 
(b) depression, ‘lack of interest’ and ‘mental confusion’; 
(c) irritability, aggression, and tantrums in children and
adults; (d) anxiety and fearfulness; and (e) emotional
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lability. Neuroses, including schizoid and obsessive–
compulsive traits, problems in inhibition of perservation,
and stereotyped behaviors, have been reported in a num-
ber of cases; and lack of eye contact was observed in one
12-year-old girl with mercury vapor poisoning (18–35). 

The third diagnostic criterion for ASD is impairment in
communication (1). Historically, about half of those with
classic autism failed to develop meaningful speech (2),
and articulation difficulties are common (3). Higher func-
tioning individuals may have language fluency but still
show semantic and pragmatic errors (3,36). In many cases
of ASD, verbal IQ is lower than performance IQ (3).
Similarly, mercury-exposed children and adults show a
marked difficulty with speech (9,19,37). In milder cases,
scores on language tests may be lower than those of
unexposed controls (31,38). Iraqi children who were post-
natally poisoned developed articulation problems, from
slow, slurred word production to an inability to generate
meaningful speech; while Iraqi babies exposed prenatally
either failed to develop language or presented with
severe language deficits in childhood (23,24,39). Workers
with Mad Hatter’s disease had word retrieval and articu-
lation difficulties (21). 

Nearly all cases of ASD and HgP involve disorders of
physical movement (2,30,40). Clumsiness or lack of coor-
dination has been described in many higher functioning
ASD individuals (41). Infants and toddlers later diagnosed
with autism may fail to crawl properly or may fall over
while sitting or standing; and the movement disturbances
typically occur on the right side of the body (42).
Problems with intentional movement and imitation are
common in ASD, as are a variety of unusual stereotypic
behaviors such as toe walking, rocking, abnormal pos-
tures, choreiform movements, spinning; and hand flap-
ping (2,3,43,44). Noteworthy because of similarities to
autism are reports in Hg literature of: (a) children in Iraq
and Japan who were unable to stand, sit, or crawl (34,39);
(b) Minamata disease patients whose movement distur-
bances were localized to one side of the body, and a girl
exposed to Hg vapor who tended to fall to the right
(18,34); (c) flapping motions in an infant poisoned from
contaminated pork (37) and in a man injected with
thimerosal (27); (d) choreiform movements in mercury
vapor intoxication (19); (e) toe walking in a moderately
poisoned Minamata child (34); (f) poor coordination and
clumsiness among victims of acrodynia (45); (g) rocking
among infants with acrodynia (11); and (h) unusual pos-
tures observed in both acrodynia and mercury vapor poi-
soning (11,31). The presence of flapping motions in both
diseases is of interest because it is such an unusual
behavior that it has been recommended as a diagnostic
marker for autism (46). 

Virtually all ASD subjects show a variety of sens-
ory abnormalities (2). Auditory deficits are present in a
Medical Hypotheses (2001) 56(4), 462–471
minority of individuals and can range from mild to pro-
found hearing loss (2,47). Over- or under-reaction to
sound is nearly universal (2,48), and deficits in language
comprehension are often present (3). Pain sensitivity or
insensitivity is common, as is a general aversion to touch;
abnormal sensation in the extremities and mouth may
also be present and has been detected even in toddlers
under 12 months old (2,49). There may be a variety 
of visual disturbances, including sensitivity to light
(2,50,51,52). As in autism, sensory issues are reported in
virtually all instances of Hg toxicity (40). HgP can lead to
mild to profound hearing loss (40); speech discrimination
is especially impaired (9,34,). Iraqi babies exposed pre-
natally showed exaggerated reaction to noise (23), while
in acrodynia, patients reported noise sensitivity (45).
Abnormal sensation in the extremities and mouth is the
most common sensory disturbance (25,28). Acrodynia
sufferers and prenatally exposed Iraqi babies exhibited
excessive pain when bumping limbs and an aversion to
touch (23,24,45,53). A range of visual problems has been
reported, including photophobia (18,23,34). 

COMPARISON OF BIOLOGICAL ABNORMALITIES 

The biological abnormalities commonly found in aut-
ism are listed in Table 2, along with the corresponding
pathologies arising from mercury exposure. Especially
noteworthy similarities are described. 

Autism is a neurodevelopmental disorder which has
been characterized as ‘a disorder of neuronal organiza-
tion, that is, the development of the dentritic tree, 
synaptogenesis, and the development of the complex
connectivity within and between brain regions’ (54).
Depressed expression of neural cell adhesion molecules
(NCAMs), which are critical during brain development for
proper synaptic structuring, has been found in one study
of autism (55). Organic mercury, which readily crosses
the blood–brain barrier, preferentially targets nerve cells
and nerve fibers (56); primates accumulate the highest
Hg-levels in the brain relative to other organs (40).
Furthermore, although most cells respond to mercurial
injury by modulating levels of glutathione (GSH), 
metallothionein, hemoxygenase, and other stress pro-
teins, neurons tend to be ‘markedly deficient in these
responses’ and thus are less able to remove Hg and more
prone to Hg-induced injury (56). In the developing brain,
mercury interferes with neuronal migration, depresses
cell division, disrupts microtubule function, and reduces
NCAMs (28,57–59). 

While damage has been observed in a number of brain
areas in autism, many nuclei and functions are spared
(36). HgP’s damage is similarly selective (40). Numerous
studies link autism with neuronal atypicalities within the
amygdala, hippocampi, basal ganglia, the Purkinje and
© 2001 Harcourt Publishers Ltd
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Table 2 Summary comparison of biological abnormalities in autism and mercury exposure 

Mercury exposure Autism 

Biochemistry
Binds -SH groups; blocks sulfate transporter in Low sulfate levels (91,92) 

intestines, kidneys (40,93)
Reduces glutathione availability; inhibits enzymes of glutathione Low levels of glutathione; decreased ability of liver to detoxify

metabolism; glutathione needed in neurons, cells, and liver to xenobiotics; abnormal glutathione peroxidase activity in erythrocytes
detoxify heavy metals; reduces glutathione peroxidase and (91,94,95) 
reductase (97,100,161,162)

Disrupts purine and pyrimidine metabolism (10,97,158,159) Purine and pyrimidine metabolism errors lead to autistic features 
(2,101,102) 

Disrupts mitochondrial activities, especially in brain (160,163,164) Mitochondrial dysfunction, especially in brain (76,172) 

Immune system
Sensitive individuals more likely to have allergies, asthma, More likely to have allergies and asthma; familial presence of

autoimmune-like symptoms, especially rheumatoid-like autoimmune diseases, especially rheumatoid arthritis; IgA
ones (8,11,18,24,28,31,111,113) deficiencies (103,106–109,115) 

Can produce an immune response in CNS; causes brain/MBP On-going immune response in CNS; brain/MBP autoantibodies
autoantibodies (18,111,165) present (104,105,109,110) 

Causes overproduction of Th2 subset; kills/inhibits lymphocytes, Skewed immune-cell subset in the Th2 direction; decreased
T-cells, and monocytes; decreases NK T-cell activity; induces or responses to T-cell mitogens; reduced NK T-cell function; increased
suppresses IFNg & IL-2 (100,112,117–120,166) IFNg & IL-12 (103,108,114–116,173,174) 

CNS structure
Selectively targets brain areas unable to detoxify or reduce Specific areas of brain pathology; many functions spared (36) 
Hg-induced oxidative stress (40,56,161)
Accummulates in amygdala, hippocampus, basal ganglia, cerebral Pathology in amygdala, hippocampus, basal ganglia, cerebral

cortex; damages Purkinje and granule cells in cerebellum; brain cortex; damage to Purkinje and granule cells in cerebellum; brain
stem defects in some cases (10,34,40,70–73) stem defects in some cases (36,60–69) 

Causes abnormal neuronal cytoarchitecture; disrupts neuronal Neuronal disorganization; increased neuronal cell replication,
migration, microtubules, and cell division; reduces NCAMs increased glial cells; depressed expression of NCAMs (4,54,55) 
(10,28,57–59,161)

Progressive microcephaly (24) Progressive microcephaly and macrocephaly (175) 

Neuro-chemistry
Prevents presynaptic serotonin release and inhibits serotonin Decreased serotonin synthesis in children; abnormal calcium

transport; causes calcium disruptions (78,79,163,167,168) metabolism (76,77,103,179) 
Alters dopamine systems; peroxidine deficiency in rats resembles Either high or low dopamine levels; positive response to peroxidine,

mercurialism in humans (8,80) which lowers dopamine levels (2,177,178) 
Elevates epinephrine and norepinephrine levels by blocking enzyme Elevated norepinephrine and epinephrine (2) 

that degrades epinephrine (81,160)
Elevates glutamate (21,171) Elevated glutamate and asparate (82,176) 
Leads to cortical acetylcholine deficiency; increases muscarinic Cortical acetylcholine deficiency; reduced muscarinic receptor

receptor density in hippocampus and cerebellum (57,170) binding in hippocampus (83) 
Causes demyelinating neuropathy (22,169) Demyelination in brain (105) 

Neurophysiology
Causes abnormal EEGs, epileptiform activity, variable patterns, Abnormal EEGs, epileptiform activity, variable patterns, including 

e.g., subtle, low amplitude seizure activities (27,31,34,86–89) subtle, low amplitude seizure activities (2,4,84,85) 
Causes abnormal vestibular nystagmus responses; loss of sense of Abnormal vestibular nystagmus responses; loss of sense of position

position in space (9,19,34,70) in space (27,180) 
Results in autonomic disturbance: excessive sweating, poor Autonomic disturbance: unusual sweating, poor circulation, elevated

circulation, elevated heart rate (11,18,31,45) heart rate (17,180) 
granule cells of the cerebellum, brainstem, basal ganglia,
and cerebral cortex (36,60–69). Each of these areas can 
be affected by HgP (10,34,40,70–73). Migration of Hg,
including eHg, into the amygdala is particularly notewor-
thy, because in primates this brain region has neurons
specific for eye contact (74) and it is implicated in autism
and in social behaviors (65,66,75). 

Autistic brains show neurotransmitter irregularities
which are virtually identical to those arising from Hg
exposure: both high or low serotonin and dopamine,
depending on the subjects studied; elevated epinephrine
and norepinephrine in plasma and brain; elevated 
© 2001 Harcourt Publishers Ltd
glutamate; and acetylcholine deficiency in hippocampus
(2,21,76–83). 

Gillberg and Coleman (2) estimate that 35–45% of
autistics eventually develop epilepsy. A recent MEG study
reported epileptiform activity in 82% of 50 regressive
autistic children; in another study, half the autistic chil-
dren expressed abnormal EEG activity during sleep (84).
Autistic EEG abnormalities tend to be non-specific and
have a variety of patterns (85). Unusual epileptiform
activity has been found in a number of mercury poison-
ing cases (18,27,34,86–88). Early mHg exposure enhances
tendencies toward epileptiform activity with a reduced
Medical Hypotheses (2001) 56(4), 462–471
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level of seizure-discharge amplitude (89), a finding con-
sistent with the subtlety of seizures in many autism
spectrum children (84,85). The fact that Hg increases
extracellular glutamate would also contribute to epilepti-
form activity (90). 

Some autistic children show a low capacity to oxidize
sulfur compounds and low levels of sulfate (91,92).
These findings may be linked with HgP because: (a) Hg
preferentially binds to sulfhydryl molecules (-SH) such
as cysteine and GSH, thereby impairing various cellular
functions (40); and (b) mercury can irreversibly block
the sulfate transporter NaSi cotransporter NaSi-1, present
in kidneys and intestines, thus reducing sulfate absorp-
tion (93). Besides low sulfate, many autistics have low
GSH levels, abnormal GSH-peroxidase activity within
erythrocytes, and decreased hepatic ability to detoxify
xenobiotics (91,94,95). GSH participates in cellular
detoxification of heavy metals (96); hepatic GSH is a prim-
ary substrate for organic-Hg clearance from the human
(40); and intraneuronal GSH participates in various pro-
tective responses against Hg in the CNS (56). By prefer-
entially binding with GSH, preventing absorption of
sulfate, or inhibiting the enzymes of glutathione meta-
bolism (97), Hg might diminish GSH bioavailability. Low
GSH can also derive from chronic infection (98,99),
which would be more likely in the presence of immune
impairments arising from mercury (100). Furthermore,
mercury disrupts purine and pyrimidine metabolism
(97,10). Altered purine or pyrimidine metabolism can
induce autistic features and classical autism (2,101,102),
suggesting another mechanism by which Hg can con-
tribute to autistic traits. 

Autistics are more likely to have allergies, asthma,
selective IgA deficiency (sIgAd), enhanced expression of
HLA-DR antigen, and an absence of interleukin-2 recep-
tors, as well as familial autoimmunity and a variety of
autoimmune phenomena. These include elevated serum
IgG and ANA titers, IgM and IgG brain antibodies, and
myelin basic protein (MBP) antibodies (103–110).
Similarly, atypical responses to Hg have been ascribed to
allergic or autoimmune reactions (8), and genetic predis-
position to such reactions may explain why Hg sensitivity
varies so widely by individual (88,111). Children who
developed acrodynia were more likely to have asthma
and other allergies (11); IgG brain autoantibodies, MBP,
and ANA have been found in HgP subjects (18,111,112);
and mice genetically prone to develop autoimmune 
diseases ‘are highly susceptible to mercury-induced im-
munopathological alterations’ even at the lowest doses
(113). Additionally, many autistics have reduced natural
killer cell (NK) function, as well as immune-cell subsets
shifted in a Th2 direction and increased urine neopterin
levels, indicating immune system activiation (103,114–116).
Depending upon genetic predisposition, Hg can induce
Medical Hypotheses (2001) 56(4), 462–471
immune activation, an expansion of Th2 subsets, and
decreased NK activity (117–120). 

POPULATION CHARACTERISTICS 

In most affected children, autistic symptoms emerge
gradually, although there are cases of sudden onset 
(3). The earliest abnormalities have been detected in 
4-month-olds and consist of subtle movement disturb-
ances; subtle motor-sensory disturbances have been
observed in 9-month-olds (49). More overt speech and
hearing difficulties become noticeable to parents and
pediatricians between 12 and 18 months (2). TMS vac-
cines have been given in repeated intervals starting from
infancy and continuing until 12 to 18 months. While HgP
symptoms, may arise suddenly in especially sensitive
individuals (11), usually there is a preclinical ‘silent stage’
in which subtle neurological changes are occuring (121)
and then a gradual emergence of symptoms. The first
symptoms are typically sensory-and motor-related, which
are followed by speech and hearing deficits, and finally
the full array of HgP characteristics (40). Thus, both the
timing and nature of symptom emergence in ASD are
fully consistent with a vaccinal Hg etiology. This parallel
is reinforced by parental reports of excessive amounts of
mercury in urine or hair from younger autistic children,
as well as some improvement in symptoms with standard
chelation therapy (122). 

The discovery and rise in prevalence of ASD mirrors
the introduction and spread of TMS in vaccines. Autism
was first described in 1943 among children born in the
1930s (123). Thimerosal was first introduced into vac-
cines in the 1930s (7). In studies conducted prior to 1970,
autism prevalence was estimated, at 1 in 2000; in studies
from 1970 to 1990 it averaged 1 in 1000 (124). This was 
a period of increased vaccination rates of the TMS-
containing DPT vaccines among children in the devel-
oped world. In the early 1990s, the prevalence of autism
was found to be 1 in 500 (125), and in 2000 the CDC
found 1 in 150 children affected in one community,
which was consistent with reports from other areas in the
country (126). In the late 1980s and early 1990s, two new
TMS vaccines, the HIB and Hepatitis B, were added to the
recommended schedule (7). 

Nearly all US children are immunized, yet only a small
proportion develop autism. A pertinent characteristic of
mercury is the great variability in its effects by individual,
so that at the same exposure level, some will be affected
severely while others will be asymptomatic (9,11,28). An
example is acrodynia, which arose in the early 20th cen-
tury from mercury in teething powders and afflicted only
1 in 500–1000 children given the same low dose (28).
Studies in mice as well as humans indicate that suscepti-
bility to Hg effects arises from genetic status, in some
© 2001 Harcourt Publishers Ltd
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cases including a propensity to autoimmune disorders
(113,34,40). ASD exhibits a strong genetic component,
with high concordance in monozygotic twins and a
higher than expected incidence among siblings (4);
autism is also more prevalent in families with autoim-
mune disorders (106). 

Additionally, autism is more prevalent among boys
than girls, with the ratio estimated at 4:1 (2). Mercury
studies in mice and humans consistently report greater
effects on males than females, except for kidney damage
(57). At high doses, both sexes are affected equally; at low
doses only males are affected (38,40,127). 

DISCUSSION 

We have shown that every major characteristic of autism
has been exhibited in at least several cases of docu-
mented mercury poisoning. Recently, the FDA and AAP
have revealed that the amount of mercury given to
infants from vaccinations has exceeded safety levels. The
timing of mercury administration via vaccines coincides
with the onset of autistic symptoms. Parental reports of
autistic children with measurable mercury levels in hair
and urine indicate a history of mercury exposure. Thus
the standard primary criteria for a diagnosis of mercury
poisoning – observable symptoms, known exposure at
the time of symptom onset, and detectable levels in bio-
logic samples (11,31) – have been met in autism. As such,
mercury toxicity may be a significant etiological factor in
at least some cases of regressive autism. Further, each
known form of HgP in the past has resulted in a unique
variation of mercurialism – e.g. Minamata disease, acro-
dynia, Mad Hatter’s disease – none of which has been
autism, suggesting that the Hg source which may be
involved in ASD has not yet been characterized; given
that most infants receive eHg via vaccines, and given that
the effect on infants of eHg in vaccines has never been
studied (129), vaccinal thimerosal should be considered a
probable source. It is also possible that vaccinal eHg may
be additive to a prenatal mercury load derived from
maternal amalgams, immune globulin injections, or fish
consumption, and environmental sources. 

CONCLUSION 

The history of acrodynia illustrates that a severe disorder,
afflicting a small but significant percentage of children,
can arise from a seemingly benign application of low
doses of mercury. This review establishes the likelihood
that Hg may likewise be etiologically significant in ASD,
with the Hg derived from thimerosal in vaccines rather
than teething powders. Due to the extensive parallels
between autism and HgP, the likelihood of a causal rela-
tionship is great. Given this possibility, TMS should be
© 2001 Harcourt Publishers Ltd
removed from all childhood vaccines, and the mech-
anisms of Hg toxicity in autism should be thoroughly
investigated. With perhaps 1 in 150 children now diag-
nosed with ASD, development of HgP-related treatments,
such as chelation, would prove beneficial for this large
and seemingly growing population. 
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